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Abstract— The purpose of this paper is to discuss the relation-
ship between the structure at infinity of a linear multivariable
system and its interactor matrix. It will be shown that the
structure at infinity of a given system coincides with row degrees
of it’s interactor if and only if the interactor is row proper.

I. I NTRODUCTION

An interactor was originally defined by Wolovich and Falb
[1] as the system invariant under dynamic compensation,
which is a lower left triangular polynomial matrix. Since
an interactor is the generalization of the relative degree of a
scalar transfer function for linear multivariable case, it has
been used for many of linear multivariable control design
problems, e.g., the model matching control, the decoupling
control, the disturbance decoupling control, the adaptive con-
trol, etc. [2]-[6]. In these control design problems, especially
in the adaptive control problem, the triangular structure of
the interactor plays an important role, but, from the algebraic
point of view, the triangular structure is not necessarily
an inherent property of the interactor. In fact, the spectral
interactor matrix discussed in [7] is not a triangular matrix
any more. In general, an interactor can be defined by any
polynomial matrix which cancels all zeros at infinity of a
given plant transfer matrix by premultiplying. This implies
that the interactor can be regarded as another expression of
the structure at infinity of the plant, and hence, there must be
a direct relationship between the structure at infinity of the
plant and the structure of degrees of it’s interactor. However,
although the structure at infinity is determined uniquely, the
interactor and even its structure of degrees are not determined
uniquely. In this note, to establish this explicit relationship,
the regular interactor in defined as the interactor whose row
degrees coincide with the structure at infinity of the plant. It
will be shown that the interactor is regular if and only if the
interactor is row proper.

II. PRELIMINARIES

Let T (s) be am×m nonsingular and strictly proper trans-
fer matrix. Then, there will exist bicausal rational matrices
U(s) andV (s) such that

U(s)T (s)V (s) =


1

sf1
0

. . .

0 1
sfm

 (1)
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wheref1 ≤ f2 ≤ · · · ≤ fm are positive integers which are
determined uniquely.

Definition 1: The set{f1, f2, · · · , fm} is called the struc-
ture at infinity ofT (s), andfi is called the order ofi-th zero
at infinity of T (s).

It is well known thatfi can be determined by the following
relations.

f1 = δ1

fi = δi − δi−1 (i = 2, · · · ,m) (2)

where δi is the minimum relative degree among those of
non-zeroi-th ordered minors ofT (s). On the other hand, an
interactor ofT (s) is defined by the following.

Definition 2: A m×m polynomial matrixL(s) satisfying
the following equation is called an interactor ofT (s).

lim
s→∞

L(s)T (s) = Λ, nonsingular (3)

It should be noted that this definition does not restrict
the interactor to a lower left triangular polynomial matrix.
It defines the interactor only by the most essential property
(eq.(3)) that all interactors must have. Since eq.(3) implies
that L(s)T (s) does not have any zeros at infinity, the
interactor can be also defined by any polynomial matrix,
L(s), which cancels all zeros at infinity ofT (s) by pre-
multiplying. From this point of view, the interactor is an
alternative expression of the structure at infitnity ofT (s),
and hence, there must be some direct relationship between
the structure at infinity ofT (s) and the structure of degrees
of its interactorL(s).

Let T (s) andL(s) be represented by

T (s) = T1s
−1 + T2s

−2 + · · ·
L(s) = Lwsw + Lw−1s

w−1 + · · · + L0 (4)

where Ti ∈ Rm×m is the Markov parameter ofT (s) and
Li ∈ Rm×m is the coefficient matrix of an interactor. Then,
it is known thatL(s) is an interactor ofT (s) if and only if
Ti andLi satisfy the following equation [5].

Γw
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w
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
0
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0
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
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1


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 (5)



whereΓi is thei-th truncated block Toeplitz matrix ofT (s)
defined by the following.

Γi =


TT

1 0 · · · 0

TT
2 TT

1

...
...

. . . 0
TT

i · · · · · · TT
1

 i = 1, 2, · · · (6)

Since, L0 does not appear in eq.(5),L0 can be chosen
arbitrarily. It was also shown in [5] that the degree ofL(s)
is the maximum order of zero at infinity ofT (s), and the
degree ofdetL(s) equals the relative degree ofdetT (s), i.e.,

w = fm (7)

deg detL(s) = δm =
m∑

i=1

fi. (8)

Eqs.(7) and (8) give a relationship between the structure at
infinity of T (s) and its interactor to a certain extent. How-
ever, under the condition of eqs.(7) and (8), the interactor and
even the structure of degrees of the interactor are not still
determined uniquely, then further investigation is needed to
establish more explicit relationship between the structure at
infinity of T (s) and the structure of degrees of its interactor.

To show a property ofΓi more precisely,fi’s are assumed
to satisfy the following relation.

0 < f1 = f2 = · · · = ft1 < ft1+1 =
· · · = ft1+t2 < ft1+t2+1 = · · ·

· · · < ft1+···+td−1+1 = · · · = ft1+···+td
(9)

where ti is a number of zeros at infinity ofT (s) whose
order is allft0+t1+···+ti−1+1 (t0 = 0). In other words,ti is
multiplicity of zeros at infinity, and hence,

d∑
i=1

ti = m (10)

Note that iffi’s are distinct, thenti = 1 (i = 1, · · · , m, d =
m). It is shown in [8][5] that the rank ofΓi satisfies

rankΓk = rankΓk−1 + σk, (k = 1, 2, · · · , Γ0 = 0)
(11)

whereσk is defined as follows. σk = σk−1 + ti if k = ft0+t1+···+ti−1+1,
(i = 1, · · · , d, t0 = 0)

σk = σk−1 otherwise
(12)

Here, {
σ0 = 0
σft1+···+td−1+1 =

∑d
i=1 ti = m

This property can be derived using eq.(1). Eqs.(11) and (12)
will be used in the proof of Theorem 1 in the next section.

III. R EGULAR INTERACTOR

In this section, the relationship between the structure at
infinity of T (s) and the structure of degrees of its interactor
L(s) will be considered. Before stating the main result, we
define a regular interactor as follows.

Definition 3: An interactor of T (s) is called a regular
interactor if its row degrees coincide with the structure at
infinity.

Note that the lower left triangular interactor defined in [5]
is the special case of this definition. The main result of this
paper is stated as the following Theorem.

Theorem 1:Let L(s) be an interactor ofT (s). Then,L(s)
is regular if and only ifL(s) is row proper.

Proof: (Necessity)L(s) is assumed to be a regular
interactor ofT (s), i.e., its row degrees are{f1, f2, · · · , fm}.
Then, eq.(8) implies thatL(s) is row proper because the
degree ofdetL(s) is equal to the sum of the row degrees of
L(s) [9].
(Sufficiency)L(s) is assumed to be a row proper interactor
of T (s). Let ri (i = 1, · · · ,m) be the i-th row degree of
L(s). Then,L(s) can be expanded as

L(s) =

 sr1 0
.. .

0 srm

Rq

+

 sr1−1 0
. . .

0 srm−1

Rq−1 + · · ·

+

 sr1−q 0
. . .

0 srm−q

R0 (13)

where Ri ∈ Rm×m (i = 0, · · · , q) and q = max[r1,
r2, · · · , rm]. Furthermore, in eq.(13),sj is set to 0 for
negativej and the corresponding row vector of a coefficient
matrix is also set to0. Since L(s) is row proper, the
leading coefficient matrixRq is nonsingular. Without loss
of generality, it is assumed that

0 < r1 = · · · = rb1 < rb1+1 = · · ·
· · · = rb1+b2 < rb1+b2+1 = · · ·

< rb1+···+be−1+1 = · · · = rb1+···+be (14)

wherebi is the multiplicity of row degrees ofL(s), and
hence

e∑
i=1

bi = m (15)

Note that if ri (i = 1, · · · ,m) are distinct, thenbi = 1
(i = 1, · · · , e, e = m).

SinceL(s) is an interactor ofT (s), from the definition of
the interactor, the expanded form ofL(s)T (s) satisfies the
following equation.



L(s)T (s) =

 sr1−1 0
. ..

0 srm−1

G1

+

 sr1−2 0
. . .

0 srm−2

G2 + · · ·

= Λ + lower degree terms, (16)

(Λ : nonsingular)

where, from eqs.(4) and (13), the firstq coefficient matri-
cesG1, · · · , Gq are calculated by the following.
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Eq.(16) implies thatG1, · · · , Grb1+···+be−1+1 have the fol-
lowing forms.

G1 = · · · = Gr1−1 = 0

Gr1 =
[

X1

0

]
}b1 , X1 ∈ Rb1×m, rankX1 = b1

Gr1+1, · · · , Grb1+1−1 =
[

∗
0

]
}b1

Grb1+1 =

 ∗
X2

0

 }b1

}b2

X2 ∈ Rb2×m, rankX2 = b2

Grb1+1+1, · · · , Grb1+b2+1−1 =
[

∗
0

]
}b1 + b2

Grb1+b2+1 =

 ∗
X3

0

 }b1 + b2

}b3

X3 ∈ Rb3×m, rankX3 = b3

Grb1+b2+1+1, · · · , Grb1+b2+b3+1−1

=
[

∗
0

]
}b1 + b2 + b3

...

Grb1+···+be−1+1 =
[

∗
Xe

]
}b1 + · · · + be−1

}be
,

Xe ∈ Rbe×m, rankXe = be (18)

and


X1

X2

...
Xe

 = Λ nonsingular (19)

In eq.(18), ’*’ denotes some matrix with an appropriate
size. SinceRq is nonsingular, substituting eqs.(18) and (19)
into eq.(17) gives the following relations of the rank ofΓi

in terms of the row degrees ofL(s).

rankΓk = rankΓk−1 + ξk, (Γ0 = 0, k = 1, 2, · · ·) (20)

whereξk is defined as follows.

 ξk = ξk−1 + bi if k = rb0+b1+···+bi−1+1,
(i = 1, · · · , e, b0 = 0)

ξk = ξk−1 otherwise
(21)

Here, {
ξ0 = 0
ξrb1+···+bd−1+1 =

∑e
i=1 bi = m

By comparing eqs.(11),(12) and eqs.(20),(21), we have

e = d, bi = ti, ri = fi (i = 1, · · · ,m) (22)

which means that the row degrees ofL(s) coincide with
the structure at infinity, and hence,L(s) is a regular interactor
of T (s).

It was shown in [5] that there always exists an appropriate
row permutation matrixW ∈ Rm×m such thatWT (s)
has a lower left triangular regular interactorLW (s). This
guarantees the existence of a regular interactor for any
nonsingularT (s) becauseLW (s)W is one of the regular
interactors ofT (s). However, it should be noted that there
does not necessarily exist a lower left triangular regular
interactor for anyT (s) unless rows ofT (s) are properly
reordered.

Example 1:Consider the following transfer matrix.

G(s) =


s2 + 1

s3

1
s

1
s

s + 1
s2

s2 + 2s + 2
s3

s + 3
s2

1
s

2
s

3s2 + 3
s3

 (23)

The structure at infinity ofG(s) is {f1, f2, f3} = {1, 1, 3}.
From this, the degree of an interactor ofG(s) is w = f3 = 3,
i.e., all interactors can be writen as

L(s) = L3s
3 + L2s

2 + L1s + L0, (24)

whereLi ∈ R3×3 is a coefficient matrix.
It is easy to verify that the following polynomial matrix

is the interactor ofG(s).

LA(s) =

 s 0 0
−s3 −s3 s2

−s2 s2 0

 (25)



And, it is also readily checked that

degLA(s) = fm = f3 = 3
deg det LA(s) = f1 + f2 + f3 = 5. (26)

These are the properties that all interactors have. But, since
the coeffinient matrix of the maxmum row degree terms of
LA(s) is  1 0 0

1 −1 0
1 1 0

 (27)

which is not nonsingular,LA(s) is not row proper. In fact,
row degrees ofLA(s) are{r1, r2, r3} = {1, 3, 2} which do
not coincide with the structure at infinity ofG(s).

On the other hand, the followingLB(s) is one example
of regular interactors ofG(s).

LB(s) =

 s s 0
s 0 s

−s3 s3 −s2

 (28)

LB(s) satisfies eq.(26), and its coefficient matrix of the
maximum row degree terms is 1 1 0

1 0 1
−1 1 0

 (29)

which is nonsingular, and hence,LB(s) is row proper. In fact,
the row degrees ofLB(s), {r1, r2, r3} = {1, 1, 3} coincide
with the structure at infinity ofG(s).

It should be noted that this system does not have a lower
left regular interactor.

But, if the second and the third rows ofG(s) are ex-
changed, i.e.,

WG(s) =


s2 + 1

s3

1
s

1
s

1
s

2
s

3s2 + 3
s3

s + 1
s2

s2 + 2s + 2
s3

s + 3
s2

 (30)

whereW is the row permutation matrix, thenWG(s) has
the following lower left and regular interactor.

L1(s) =

 s 0 0
0 s 0

−s3 −s2 s3

 (31)

It should be noted that once the diagonal elements of
the rower left triangular and regular matrix are fixed, its
off diagonal elements are determined uniquely. This is an
important property of the lowe left and regular interactor,
which is very useful for the adaptive control.

IV. CONCLUSIONS

In this paper, we considered the problem of finding the
relationship between the structure at infinity of a linear
multivariable system and the structure of degrees of its
interactor matrix. For this purpose, the regular interactor was
defined as the interactor whose row degrees coincide with
the structure at infinity of the plant. It was shown that the
interactor is regular if and only if the interactor is row proper.
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