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Abstract
We present detailed analysis of the convergence prop-

erties and effectiveness of Lyapunov control design for
bilinear Hamiltonian quantum systems based on the ap-
plication of LaSalle’s invariance principle and stability
analysis from dynamical systems and control theory.
For a certain class of Hamiltonians, strong convergence
results can be obtained for both pure and mixed state
systems. The control Hamiltonians for realistic physi-
cal systems, however, generally do not fall in this class.
It is shown that the effectiveness of Lyapunov control
design in this case is significantly diminished.
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1 Introduction
Control of quantum phenomena is becoming increas-

ingly important in many divergent areas of research
including quantum computation, quantum chemistry,
nano-scale materials, and Bose-Einstein condensates.
Accordingly, quantum control theory has developed
greatly in both depth and breath in recent years, and
many results about controllability and control meth-
ods have been obtained. Broadly speaking, quan-
tum control approaches fall into two categories: open-
loop Hamiltonian (and sometimes reservoir) engineer-
ing using a variety of techniques including optimal
control [Shi, Woody and Rabitz, 1998; Maday and
Turinici, 2003; Schirmer, Girardeau and Leahy, 2000]
and geometric designs [Jurdjevic, 1997; Jurdjevic
and Sussmann, 1972; Koch and Lowenthal, 1975;
D’alessandro, 2000; Schirmer, 2002], and closed-loop
quantum state reduction and stabilization using feed-
back from weak measurements [Wiseman and Milburn,
1993; Wiseman, 1994].
Lyapunov functions have played a significant role

in control design. Originally used in feedback con-
trol to analyze the stability of the controlled system,

they have formed the basis for new control designs,
and several recent papers have discussed the appli-
cation of Lyapunov control designs to quantum sys-
tems [Vettori, 2002; Ferrante, Pavon and Raccanelli,
2002; Grivopoulus and Bamieh, 2003; Mirrahimi and
Rouchon, 2004a; Mirrahimi and Rouchon, 2004b; Mir-
rahimi and Turinici, 2005; Altafini, 2007a; Altafini,
2007b]. Although the basic mathematical formalism is
well established, using either the Schrodinger equation
for pure state wavefunctions [Vettori, 2002; Ferrante,
Pavon and Raccanelli, 2002; Grivopoulus and Bamieh,
2003], or the Liouville-von Neumann equation [von-
Neumann, 1955] for density operators [Altafini, 2007a;
Altafini, 2007b], many questions remain. For exam-
ple, some sufficient conditions for the method to be ef-
fective, i.e., guarantee convergence of the system state
converges to the target state, have been obtained [Mir-
rahimi and Rouchon, 2004a; Mirrahimi and Rouchon,
2004b; Mirrahimi and Turinici, 2005; Altafini, 2007a;
Altafini, 2007b], but are they also necessary? What are
explicit requirements on the Hamiltonian and the target
state such that the control is effective?
Moreover, there are outstanding technical issues. The

invariance principle [LaSalle and Lefschetz, 1961]
should be applied to autonomous systems, and its ap-
plication for time-dependent target states needs care-
ful justification. Moreover, the trajectory of time-
dependent target state under free evolution is gener-
ally not periodic, as previously asserted in the liter-
ature [Altafini, 2007b]. We address these issues and
present a detailed analysis of the relationship between
the effectiveness of Lyapunov control design and the
parameters in the control problem, the Hamiltonian and
the target state. In section II, we establish the mathe-
matical model for the quantum system controlled by
Lyapunov method, and apply LaSalle invariance prin-
ciple to analyze the convergence condition. In section
III and IV, we will use the results in section II to discuss
the Lyapunov control of pseudo-pure state and generic
state, under an ideal condition of the Hamiltonian; in
section V, we shall relax this condition and see how the
effectiveness of Lyapunov control will change.



2 Control System and Invariance Principle
2.1 Controlled dynamics and Lyapunov function
A controlled quantum system can be modelled in dif-

ferent ways, either as a closed system evolving unitarily
under certain Hamiltonian, or as an open system inter-
acting with a heat bath. In this paper, we restrict our
discussion to an n-level bilinear Hamiltonian dynami-
cal system satisfying the Liouville-von Neumann equa-
tion: (assuming ~ = 1):

ρ̇(t) = −i[H0 + f(t)H1, ρ(t)], (1)

where ρ is a positive trace-one operator, representing
the system state, H0 is the free evolution Hamiltonian
and H1 is the controlled Hamiltonian, both of which
are constant. In the special case when the system is in a
pure state |ψ〉, we have ρ = |ψ〉〈ψ|, and the dynamical
system can be represented as:

ψ̇(t) = −i (H0 + f(t)H1)ψ(t) (2)

although we will use the density operator formulation
throughout this paper. The general control task we con-
sider can be formulated as, given a target state ρd, we
wish to apply a certain control field f(t) to the sys-
tem that modifies its dynamics such that ρ(t) → ρd as
t → +∞. Since the free Hamiltonian H0 can gener-
ally not be turned off, it is natural to assume ρd to be
time-dependent, satisfying:

ρ̇d(t) = −i[H0, ρd(t)]. (3)

Since the evolution of both ρ(t) and ρd(t) is unitary
in our case, we require ρ(0) to be unitarily equivalent
to ρd(0). Hence, the state space M is the set of all
density operators ρ such that ρ and ρd(0) are unitarily
equivalent. This is a compact manifold, called a flag
manifold, whose dimension depends on the number of
distinct eigenvalues of ρd. We say ρd is pseudo-pure
if its spectrum has only two distinct values, one occur-
ring with multiplicity one and the other with multiplic-
ity n − 1, and ρd is generic if it has n non-degenerate
eigenvalues. We have 2n − 2 ≤ dim(M) ≤ n2 − n
with dim(M) = n2−n for generic ρd and dim(M) =
2n− 2 for pure or pseudo-pure states.
Define a function V on M×M:

V (ρ, ρd) =
1
2

Tr((ρ− ρd)2)

= Tr(ρ2
d)− Tr(ρdρ). (4)

We have V ≥ 0 with equality only if ρ = ρd. Taking
derivative of V along any solution (ρ(t), ρd(t)), and

substituting (1) and (3), we derive:

V̇ =− Tr(ρ̇dρ)− Tr(ρdρ̇)
=− Tr([−iH0, ρd]ρ)− Tr(ρd[−iH0, ρ])
− f(t) Tr(ρd[−iH1, ρ])

=− f(t) Tr(ρd[−iH1, ρ]).

If we choose f(t) = κTr(ρd[−iH1, ρ]), κ > 0, then
V̇ (ρ(t), ρd(t)) ≤ 0. Hence, V is a Lyapunov function
for the following autonomous dynamical system with
respect to (ρ(t), ρd(t)):

ρ̇(t) = −i[H0 + f(ρ, ρd)H1, ρ(t)]
ρ̇d(t) = −i[H0, ρd(t)]

f(ρ, ρd) = κTr([−iH1, ρ]ρd)
(5)

2.2 LaSalle invariance principle and invariant set
To complete the control task, we require ρ(t) → ρd(t)

as t → +∞, which is equivalent to V (ρ(t), ρd(t)) →
0. A key result for the convergence analysis is LaSalle’s
invariance principle [LaSalle and Lefschetz, 1961]:

Theorem 2.1. Let V (x) be a Lyapunov function on the
phase space Ω = {x} of an autonomous dynamical
system ẋ = f(x), satisfying V (x) > 0 for all x 6= x0

and V̇ (x) ≤ 0. Let O(x̄(t)) be the orbit of x̄(t) in
Ω. Then the invariant set E = {O(x(t))|V̇ (x̄(t)) =
0}, contains the positive limiting sets of all bounded
solutions, i.e., any bounded solution converges to E as
t→ +∞.

For our quantum dynamical system (5), since the state
space M is compact, any solution (ρ(t), ρd(t)) is
bounded. Applying LaSalle Invariance Principle we
obtain [Wang and Schirmer, 2008]:

Theorem 2.2. The state (ρ(t), ρd(t)) of the au-
tonomous dynamical system (5) converges to the invari-
ant set E = {(ρ1, ρ2) ∈ M ×M|V̇ (ρ(t), ρd(t)) =
0, (ρ(0), ρd(0)) = (ρ1, ρ2)}.

Therefore, the next step is to determine the invariant set
E, for the dynamical system (5). Notice that in LaSalle
invariance principle, E contains the positive limiting
points of all bounded solutions for any ρd(t). Hence, in
the following, we always restrict the calculation ofE to
the points (ρ1, ρ2) such that ρ2 is the positive limiting
point of the given ρd(t). For our dynamical system, the
invariant set E = {V̇ (ρ(t), ρd(t)) = 0} is equivalent
to f(t) = 0, for any t:

0 = f = Tr([−iH1, ρ]ρd)

0 = ḟ = Tr([−iH1, ρ]ρ̇d) + Tr([−iH1, ρ̇]ρd)
= −Tr([[−iH0,−iH1], ρ]ρd)
· · ·

0 =
d`f

dt`
= (−1)n Tr([Ad`

−iH0
(−iH1), ρ]ρd),



where Ad`
−iH0

(−iH1) represents `-fold commuta-
tor adjoint action of −iH0 on −iH1. Hence,
Tr([A,B]C) = −Tr([C,B]A) = −Tr([A,C]B)
gives a necessary condition for the invariant set E:

Tr([ρ, ρd] Adm
−iH0

(−iH1)) = 0, (6)

where Ad0
−iH0

(−iH1) = −iH1 and m is any non-
negative integer. Hence the invariant E depends on
both the Hamiltonian and the target state. Without loss
of generality, we assume H0 and H1 to be trace-zero.
Since H0 is hermitian and therefore diagonalizable, we
may assume H0 = diag(a1, . . . , an), with diagonal el-
ements arranged in decreasing order, where the diago-
nal elements physically represent the energy levels of
the system. We shall assume H1 to be off-diagonal in
this basis with off-diagonal elements bk` representing
the couplings between the energy levels k and `. Also
let ωk` = a` − ak be the transition frequency between
the energy levels k and `. With these assumptions,
we can prove the following useful theorem [Wang and
Schirmer, 2008]:

Theorem 2.3. If (1) H0 strongly regular, i.e., ωk` 6=
ωpq unless (k, `) = (p, q), and (2) H1 fully connected,
i.e., bk` 6= 0 except for k = `, then (ρ1, ρ2) belongs to
the invariant set E if and only if [ρ1, ρ2] is diagonal.

We note that these conditions on the Hamiltonian are
very strong and rarely satisfied for real physical sys-
tems. However, this is the ideal case for Lyapunov
control design, and it is useful to begin by analyzing
the effectiveness of the method in this ideal case before
relaxing the requirements.

2.3 Real representation for quantum systems
In order to apply stability analysis to our complex

quantum dynamical system, we require a real represen-
tation for both the Hamiltonian and the density opera-
tor. Let BIR(H) be the real vector space of all n × n
Hermitian matrices on the Hilbert space H. For any
H1,H2 ∈ BIR(H), we can define an inner product
〈H1|H2〉 = Tr(H1H2), and an associated orthonormal
basis {λk, λk`, λ̄k`}, where

λ0 = 1√
n
(ê11 + ê22 + · · ·+ ên,n) (7a)

λk = 1√
k(k+1)

(ê11 + · · ·+ êkk − kêk+1,k+1) (7b)

λk` = 1√
2
(êk` + ê`k) (7c)

λ̄k` = i√
2
(−êk` + ê`k), (7d)

êk` being the elementary matrix with 1 in the (k, `) po-
sition and 0 elsewhere, and 1 ≤ k < ` ≤ n. In this
basis, any hermitian matrix H can be represented as
an n2-dimensional real vector. For density operators ρ
with Tr(ρ) = 1 the coefficient of λ0 is constant and
thus can be dropped. Let ~s(t) and ~sd(t) be the vec-
tors in IRn2−1 representing ρ(t) and ρd(t). The adjoint

action AdiH(ρ) = [iH, ρ] in this basis is given by an
anti-symmetric matrix A acting on ~s(t). Therefore, the
quantum dynamical system (5) can be equivalently rep-
resented as:

~̇s(t) = (A0 +A1)~s(t)

~̇sd(t) = A0~sd(t)

f(t) = ~sT
dA1~s

(8)

where A0 = Ad−iH0 and A1 = Ad−iH1 . This real
representation is generally known as the Bloch vector
form especially for n = 2.

3 Convergence Analysis for Ideal Systems
In this section we consider ideal systems, i.e., systems

withH0 strongly regular andH1 fully connected. If the
system and hence the Hamiltonian are fixed, the invari-
ant setE depends on the target state ρd only. In general,
the convergence analysis depends on the spectrum of
the target state ρd, in particular the multiplicities of its
eigenvalues. As we cannot give a complete discussion
of all possible cases here, we will focus on two cases of
crucial importance, (a) when ρd is a generic mixed state
with n non-degenerate eigenvalues, and (b) when ρd is
a pure or pseudo-pure state with only two eigenvalues
with multiplicities 1 and n − 1, respectively, starting
with the two-level case.

3.1 Pseudo-pure states
We start with the special case of a two-level sys-

tem, for which the embedding of density operators into
IRn2−1 gives rise to a homeomorphism between den-
sity operators and points inside a closed ball in IR3,
with pure states forming the surface of the ball, and
the completely mixed state (0, 0, 0) its centre. In this
case there is no distinction between pseudo-pure and
generic states, all states except the completely mixed
state ρ0 = diag( 1

2 ,
1
2 ) being both generic and pseudo-

pure. Furthermore, the requirements of strong regu-
larity of H0 and full connectedness of H1 are always
satisfied for a two-level systems, except for the triv-
ial cases of systems with a single degenerate state or
no coupling to the control field. Excluding these trivial
cases, Theorem 2.3 implies that all (ρ1, ρ2) ∈ E satisfy
[ρ1, ρ2] diagonal, and one can show that there are three
types of points in the invariant set [Wang and Schirmer,
2008]

(a) Tr(ρ1ρ2) = 1, i.e., ρ1 = ρ2;
(b) Tr(ρ1ρ2) = 0;
(c) Tr[λ1ρ1] = Tr[λ1ρ2] = 0.

Another special feature of the n = 2 case is that for any
choice of H0, the trajectory of ρd(t) forms a periodic
orbit O(ρd(0)), which is a compact set, so any pos-
itive limiting point (ρ1, ρ2) of (ρ(t), ρd(t)) must sat-
isfy ρ2 ∈ O(ρd(0)). Therefore, if ρd(0) has nonzero
λ1 component, i.e., Tr(ρd(0)λ1) 6= 0 then E can only



contain the cases (a) and (b), corresponding to the val-
ues of Lyapunov function V = Vmax and V = 0.
Hence, for any ρ(t) with Tr(ρ(0)ρd(0)) 6= 0, we have
V (ρ(0), ρd(0)) < Vmax and LaSalle’s invariance prin-
ciple guarantees that V (ρ(t), ρd(t)) → 0 and ρ(t) →
ρd(t) as t → +∞. Lyapunov control in this case is an
effective strategy.
If ρd(0) has zero λ1 component, however, then the in-

variant set E contains all points (ρ1ρ2) satisfying (c),
the value of the Lyapunov function V on E spans the
entire interval [0, Vmax], and we cannot conclude that
ρ(t) → ρd(t). Indeed simulations suggest that V can
tend to any value in [0, Vmax] in this case. We can still
conclude that ρ(t) converges to the set O(ρd(t)) corre-
sponding to the orbit of ρd(t) but this is a substantially
weaker notion of convergence as there are infinitely
many distinct states whose orbits under free evolution
coincide.
If we take the Bloch vector to be ~s = (x, y, z) with
x = Tr(ρλ12), y = Tr(ρλ̄12) and z = Tr(ρλ1), as
usual for n = 2, then case (a) corresponds to ~s1 = ~s2,
case (b) corresponds to ~s1 being antipodal to ~s2, ~s1 =
−~s2, and (c) corresponds to the target state lying on
the equator of the sphere. If ~sd(0) is not on the equa-
tor, all solutions ~s(t) with ~s(0) 6= −~sd(0) converge to
~sd(t). If ~sd(0) is on the equator, any solution ~s(t) will
converge to the equator but ~s(t) 6→ ~sd(t) in general.
The picture is the same for all equivalence classes of
states, except the completely mixed state, the only dif-
ference being that pure states lie on the surface of the
ball, while pseudo-pure states with the same spectrum
lie on concentric spherical shells of in the interior.
For n > 2 pseudo-pure states are exceptional or non-

generic and the mapping from density operators into
IRn2−1 provided by the Bloch vector is only an em-
bedding, not a homeomorphism. Furthermore, the con-
ditions on the Hamiltonian of strong regularity and
complete connectedness are less trivial in this case as
there are many systems that are connected and regular
and controllable, but not strongly regular or fully con-
nected. However, assuming such ideal Hamiltonians
we can still prove [Wang and Schirmer, 2008]:

Theorem 3.1. Given a pseudo-pure state target state
ρd(t) with spectrum {w, u} and ideal Hamiltonians as
defined above, Lyapunov control is effective, i.e., any
solution ρ(t) with V (ρ(0), ρd(0)) < Vmax will con-
verge to ρd(t) as t → +∞, except when ρd has a
single pair of non-zero off-diagonal entries of the form
rk`(t) = 1

2 (w − u)eiα and rkk = r`` = 1
2 (w + u).

In the latter case any solution ρ(t) will converge to the
orbit of ρd(t) but in general ρ(t) 6→ ρd(t) as t→ +∞
and V (ρ, ρd) can take any limiting value between 0 and
Vmax.

This theorem essentially asserts that if H0 is strongly
regular, H1 is fully connected and ρd is a pseudo-pure
state whose dynamics is not confined to a periodic or-
bit in a two-dimensional subspace, then any solution
ρ(t) with Tr(ρ(0)ρd(0)) 6= 0 will converge to ρd(t) as

t → +∞. Thus for n > 2 the special case where ρ(t)
converges to the orbit O(ρd(t)) but not ρd(t), corre-
sponding to case (c) above, is precluded, except when
the target state is such that its orbit is a periodic or-
bit (circle) in a in a 2D subspace. Given any other
pseudo-pure state ρd(t), all initial states ρ(0) that are
not part of the critical manifold of states for which
Tr(ρ(0)ρd(0)) = 0 and V assumes its maximum, will
converge to the target state ρd(t) for t→∞.

3.2 Generic states for n-level systems
For n > 2 pseudo-pure states are a very small subset

of the state space. Most states ρ are generic with n
non-degenerate eigenvalues. We distinguish two cases
here: stationary target states ρd, which are diagonal (in
the eigenbasis of H0), and non-stationary target states.
When ρd is stationary, the dynamical system (5) can be
reduced to

ρ̇(t) = −i[H0 + f(ρ)H1, ρ(t)]
f(ρ) = Tr([−iH1, ρ(t)]ρd)

(9)

and the invariant set (for an ideal system) reduces ac-
cordingly to E = {ρ0|V̇ρd

(ρ(t)) = 0, ρ(0) = ρ0},
which can be shown to be equivalent to the set of all ρ0

with [ρ0, ρd] diagonal. Furthermore, since ρd is station-
ary and thus diagonal, the latter condition can further
be reduced to [ρ0, ρd] = 0 by virtue of the following:

Lemma 3.1. If A is diagonal with non-degenerate
eigenvalues and [A,B] is diagonal, then B is also di-
agonal and [A,B] = 0.

The proof follows trivially from the fact that for A =
diag(a1, . . . , an) and B = (bmn), the (m,n) compo-
nent of [A,B] is bmn(am − an). If [A,B] is diagonal
and am 6= an then we must have bmn = 0 for m 6= n.
This leads to the following [Wang and Schirmer, 2008]:

Theorem 3.2. If ρd is a generic stationary target state
then the invariant set E contains exactly the n! criti-
cal points of the Lyapunov function V (ρ) = Tr(ρ2

d) −
Tr(ρρd), i.e., the stationary states ρ(k)

d , k = 1, . . . , n!,
which commute with ρd and have the same spectrum.

As ρd is stationary and therefore diagonal, it follows
that all ρ(k)

d are also diagonal, and their diagonal ele-
ments are a permutation of those of ρd. Since Tr(ρ2

d) is
constant for a Hamiltonian system, the critical points
of V (ρ) coincide with the critical points of J(ρ) =
Tr(ρdρ), which can be regarded as the expectation
value of the observable A = ρd. We can immediately
see that V assumes its global minimum when the ex-
pectation value of Tr(ρdρ) assumes its maximum, i.e.,
for ρ = ρd, and its maximum when J(ρ) assumes its
minimum. Assuming ρ(0)

d = ρd = diag(w1, . . . , wn)
and ρ

(n!)
d = diag(wτ(1), . . . , wτ(n)), where τ is the



permutation of {1, . . . , n} that corresponds to a com-
plete inversion, i.e., τ(k) = n + 1 − k, we have [Gi-
rardeau, Schirmer, Leahy and Koch, 1998]:

J(ρ(n!)
d ) ≤ J(ρ) ≤ J(ρ(1)

d ), (10)

i.e., ρ(0)
d and ρ(n!)

d correspond to the global extrema of
V with V = 0 and V = Vmax =

∑
k w

2
k, respectively.

It is furthermore easy to show that for a given generic
stationary state ρd the critical points of the Lyapunov
function V (ρ) are hyperbolic. However, since the dy-
namical system defined by our Lyapunov control is not
the gradient flow of V (ρ), asymptotic stability of these
fixed points can not be derived directly from the associ-
ated index number of the Morse function V . Nonethe-
less, further analysis of the linearization of the dy-
namics near the critical points shows that [Wang and
Schirmer, 2008]:

Theorem 3.3. For a generic stationary target state ρd

all the critical points of the dynamical system (9) are
hyperbolic. ρd is the only sink, all other critical points
are saddles, except the global maximum, which is a
source.

Since the critical points of the dynamical system (5)
for a generic stationary state ρd are hyperbolic and
they are also hyperbolic critical points of the function
V (ρ) = V (ρ, ρd), the dimension of the stable manifold
at a critical point must be the same as the index num-
ber of the critical point of the function V . In particular,
since all critical points except the global minimum and
maximum are saddle points, they are not repulsive, and
therefore there are solutions ρ(t) outside E that con-
verge to these saddles, resulting in the failure of the
Lyapunov control method. However, as the dimensions
of the stable manifolds at these points are smaller than
dim(M), almost all solutions will still converge to the
global minimum ρ

(1)
d = ρd, and thus the Lyapunov

method is still (mostly) effective.
When the target state ρd is not stationary, the situa-

tion is somewhat more complicated as the invariant set
E may contain points with nonzero diagonal commu-
tators.

Example 3.1. Consider ρ1 and ρd(0) = ρ2 with

ρ1 =

 1
12 − 1

12 −
1
12

− 1
12

11
24

1
8

− 1
12

1
8

11
24

 , ρ2 =

 1
3

−i
12

i
12

i
12

1
3 − i

4
−i
12

i
4

1
3

 .

ρ1 and ρ2 are isospectral and we have

[ρ1, ρ2] =

0 0 0
0 11

144 i 0
0 0 − 11

144 i


i.e., (ρ1, ρ2) ∈ E but [ρ1, ρ2] 6= 0.

Simulations suggest that ρ(t) does not converge to
ρd(t) or O(ρd(t)) in this case and thus Lyapunov con-
trol fails. It is difficult to give a rigorous proof of this
observation, however, as we lack a constructive method
to ascertain asymptotic stability near a non-stationary
solution. In the special case where ρd(t) is periodic
there are tools such as Poincaré maps but it is difficult
to write down an explicit form of the Poincaré map for
general periodic orbits [Perko, 2000]. Moreover, as ob-
served earlier, for n > 2 the orbits of non-stationary
target states ρd(t) under H0 are periodic only in some
exceptional cases.
Fortunately, however, E = {[ρ1, ρ2] = 0} still holds

for a very large class of generic target states ρd(t), and
in these cases Lyapunov control tends to be effective.
Setting [ρ1, ρ2] = −Adρ2(ρ1), where Adρ2 is a lin-
ear map from the Hermitian or anti-Hermitian matrices
into su(n), let A(~s2) be the real (n2 − 1) × (n2 − 1)
matrix corresponding to the Stokes representation of
Adρ2 . Recall su(n) = T ⊕ C and IRn2−1 = ST ⊕ SC ,
where SC and ST are the real subspaces corresponding
to the Cartan and non-Cartan subspaces, C and T , re-
spectively. Let Ã(~s2) be the first n2− n rows of A(~s2)
(whose image is ST ). Then we can show [Wang and
Schirmer, 2008]:

Theorem 3.4. The invariant set E for a generic ρd(t)
contains points with nonzero commutator only if either
ρd has some equal diagonal elements or det(Ã1) = 0.
Therefore, the set of ρd(0) such that E contains points
with nonzero commutator has measure zero with re-
spect to the state space M.

Hence, if we choose a generic target state ρd(0) ran-
domly, with probability one, it will be such that E =
{[ρ1, ρ2] = 0}. Choosing an orthonormal basis such
that ρ2 is diagonal, it thus follows that ρ1 must be di-
agonal in this basis, and its diagonal elements a per-
mutation of the eigenvalues of ρ2. Thus for a given
target state ρ2 = ρd, there are again n! critical points
(ρ(k)

d (t), ρd(t)). Moreover, for any (ρ1, ρ2) ∈ E with
ρ2 = ρd and ρ1 = ρ

(k)
2 for some k, there exists a sub-

sequence {tn} such that (ρ(tn), ρd(tn)) → (ρ1, ρ2).
In particular, ρ(tn) → ρ1, ρd(tn) → ρ2, and hence,
ρ
(k)
d (tn) → ρ

(k)
2 = ρ1. Therefore, we have ρ(tn) →

ρ
(k)
d (tn). If (ρ1, ρ2) ∈ E is a different positive limiting

point of (ρ(t), ρd(t)), since V (ρ(t), ρd(t)) decreases
along the trajectory and the n! critical points are iso-
lated, we must have ρ1 = ρ

(k)
2 for the same k as for

(ρ1, ρ2). Therefore, ρ(tn) → ρ
(k)
d (tn) holds for any

positive limiting point (ρ1, ρ2) and the corresponding
subsequence {tn}. Hence ρ(t) → ρ

(k)
d (t) as t→ +∞,

and some further analysis shows [Wang and Schirmer,
2008]:

Theorem 3.5. If ρd(t) is a generic state with invariant
set E = {[ρ1, ρ2] = 0} then any solution ρ(t) con-
verges to one of the n! critical points ρ(k)

d (t), and all



solutions except ρ(1)
d (t) = ρd(t), which is stable, are

unstable.

Thus we have a similar result as for generic station-
ary ρd. The difference is that for the stationary ρd, we
can present a quantitative result about the dimensions
of the stable manifolds and hence the measure of solu-
tions that will converge to these points. For the non-
stationary target case we can not establish the analo-
gous result. However, simulations suggest that almost
all solutions will converge to ρd(t), and we can further
prove a weaker result [Wang and Schirmer, 2008]:

Proposition 3.1. For any of the unstable solutions,
ρ
(k)
d , k = 2, . . . , n! − 1, we can find solutions ρ(t),

with V (ρ(0), ρd(0)) > V (ρ(k)
d (0), ρd(0)), that still

converge to ρd(t).

4 Effectiveness of Method for Non-ideal Systems
The previous analysis relied on strong assumptions

about the system, assumingH0 strongly regular andH1

fully connected. We shall now relax these requirements
to see how the invariant set E and the effectiveness of
the Lyapunov control method change. Without loss of
generality, we present the analysis for a three-level sys-
tem, noting that the generalization to n-level systems is
straightforward.
First supposeH0 is strongly regular, as for a Morse os-

cillator, for example, but some of the off-diagonal ele-
ments ofH1 are zero, corresponding to transitions with
zero transition probability. This is the case for many
physical systems, where often only transitions between
adjacent energy levels are permitted, and we rarely
have non-vanishing transition probabilities for all pos-
sible transitions. For concreteness, assume n = 3 and

H0 =

a1 0 0
0 a2 0
0 0 a3

 , H1 =

 0 b1 0
b∗1 0 b2
0 b∗2 0

 ,

where a1 > a2 > a3. In this case, we can prove [Wang
and Schirmer, 2008] that any point (ρ1, ρ2) ∈ E must
satisfy:

[ρ1, ρ2] =

 α11 0 e−iω13tα13

0 α22 0
eiω13tα∗13 0 α33

 .

Hence, for a stationary and generic target state ρd the
points ρ1 in E must have the form

ρ1 =

β11 0 β13

0 β22 0
β∗13 0 β33

 .

We can prove that near the stationary point ρd, the
invariant set E forms a centre manifold with ρd as

a centre [Wang and Schirmer, 2008]. Therefore, the
Hartman-Grobman theorem from the centre manifold
theory, proved by Carr [Carr, 1981], implies that al-
most all solutions near ρd(t) converge to the (periodic)
solutions on the centre manifold instead of the centre
ρd. Lyapunov method in this case is ineffective.
Second, we consider the case of H1 fully connected

but H0 is not strongly regular. For example, consider

H0 =

a1 0 0
0 a2 0
0 0 a3

 , H1 =

 0 b1 b3
b∗1 0 b2
b∗3 b

∗
2 0


with ω12 = ω23, where ωmn = am − an. In this case
we can also prove that the invariant set E forms a cen-
tre manifold near ρd with ρd as a centre, and thus that
almost all solutions near ρd(t) will converge to the pe-
riodic solutions on the centre manifold other than the
centre ρd, and hence that the Lyapunov method is still
ineffective.
In summary, when either of the stringent conditions on

the Hamiltonians are relaxed even slightly, the invariant
set E becomes much larger, and in marked contrast to
the ideal system case, and the Lyapunov method fails
for almost all cases.

5 Conclusion and remarks
We have presented a detailed analysis of the Lyapunov

control method for bilinear quantum control systems
based on the application of the LaSalle invariance prin-
ciple. For the case of non-stationary target states, this
required considering the dynamics on an augmented
state space on which the total system is autonomous.
Characterization and analysis of the invariant set of this
dynamical system allowed us to establish a quite clear
picture of the effectiveness of the Lyapunov method
depending on the properties of the system and the tar-
get state. In particular, our analysis suggests that the
method is generally only effective under very strin-
gent assumptions on the Hamiltonian, and even in this
case our analysis suggests a rather more complicated
picture than previously presented in the literature (see
e.g. [Altafini, 2007a; Altafini, 2007b]), in that most of
the critical points, for instance, are unstable but not re-
pulsive.
For generic stationary target states, it can be shown

explicitly that all of the unstable critical points except
the global maximum in fact have attractive manifolds
of positive dimension. For target states that are not
stationary under the action of H0, there are additional
complications in that the invariant set can be larger
than the set of critical points of the Lyapunov func-
tion, although the set of target states ρd(t) for which
this happens in the ideal system case is of measure
zero. Thus, while these issues complicate the problem
for systems with strongly regular free (drift) Hamilto-
nian H0 and fully connected control Hamiltonian H1,
Lyapunov control is still generally effective in that for



most target states ρd(t) the invariant set contains only
the critical points of the Lyapunov function V , and the
target state ρd(t) is the only hyperbolic sink of the dy-
namical system.
The situation changes radically when either of the

twin requirements of strong regularity of H0 and full
connectedness of H1 are relaxed, even slightly. In this
case the method becomes not only less effective, but the
emergence of centre manifolds around the target state
suggests that the method is likely to become ineffective
in practice. Since the strict requirements above do not
appear to be satisfied for most physical systems of in-
terest, this suggests that the utility of this method for
practical control field design is rather limited. It would
be desirable to have stronger analytic results for non-
stationary target states where well-established tools for
stability and convergence analysis near fixed points are
generally no longer applicable. Although some theo-
retical tools such as the Poincare map and Floquet’s
theorem [Perko, 2000] exist, to fully answer the ques-
tion of stability and convergence of Lyapunov control
for non-stationary (and in general non-periodic) tar-
get states, even for ideal bilinear Hamiltonian systems,
would seem to require the development of new tools in
dynamical systems theory.
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