Feedback classification of single-input systems over von Neann regular
rings

Andrés Sez-Schwedt
University of Leon, SPAIN

Abstract

This work deals with linear systems with scalars in a
commutative ring R with the property of being “von
Neumann regular”, i.e. R is zero-dimensional and has
no nonzero nilpotents. We prove that every single-input,
n-dimensional system over R is feedback equivalent to
a special normal form, whose existence actually char-
acterizes the class of von Neumann regular rings. This
normal form, which captures completely the structure

of the reachable submodule of the system, is associated

to a collection of n principal ideals generated by idem-
potent elements; f..., f,, each dividing the following
one. The normal form can be obtained by an explicit al-
gorithm, which is implemented in PARI-GP in the case
R=1Z/(dZ), where d is a squarefree integer.

1. Introduction and notation

Let R be a commutative ring with 1. Aminput,
n-dimensional system (or a system of sizem)) over
Ris a pair of matricegA,B), with Ae R™" andB ¢
R™M  See the motivation for studying linear systems
over commutative rings in [1]. The paiA, B) can be
regarded as the control process with stdi€k-o € R”
and inputq(u;)i>1 € R™

Xo=0, X =Ax%_1+Bu, fori>1.

Then, the set of all states reachable from the origin is
the submodule oR" given by the image of the matrix
A*B = [B|AB|---|A"1B]. The system(A,B) is reach-
able if the columns ofA*B generateR".

More generally, for alli = 1,....n, one can de-
fine N* (see [4]), the submodule oR" given by
im([B|AB|---|A~1B]). These submoduleN* are in-
variant under feedback equivalence. Recall that two
systems(A,B) and (A',B') are feedback equivalent if
there exist invertible matricd® e GLy(R),Q € GLn(R)
and a matrixK € R™" such that(A',B') = (PAP~ +
PBK,PBQ), i.e. (A',B) can be obtained frortA, B) by
a combination of basis changes and state feedback.

The present article is motivated by the following
situation. In [2], single input system@\, b) over a
Bézout domairR are studied, with the condition that the
system(A, b) is weakly reachable, i.e. the square matrix
A*b has nonzero determinant. It is shown that any such
system is feedback equivalent to a reduced form

* % ds

d * 0
A= |0 o Bt

0 0 dh = 0

where thed’s are nonzero, and thes in row i of A

can be “adjusted” moduld to derive a canonical form.

If all the d;’s are equal to 1, then there are ws, i.e.

the system is reachable and the reduced form coincides
with the classical controller canonical form.

The purpose of this work is to generalize that re-
duced form to systems which are not weakly reachable,
and also to allow Bzout rings with zero-divisors. If
eachd; is idempotent, then the’s in that row can be
easily transformed elements orthogonaldioby per-
forming elementary transformations. We prove that
the class of commutative von Neumann regular rings
is characterized precisely as those rings for which any
single-input system is equivalent to such a normal form
with eachd; idempotent and orthogonal to thés in
the corresponding row. An algorithm is given to com-
pute explicitely the normal form of a system. Next, for
a given single-input systein, we prove that the struc-
ture of each submodulé* can be recovered in terms of
di,...,di. We show with two examples that the princi-
pal idealsd;R do not characterize the feedback equiva-
lence class of a system, at least not trivially, some fur-
ther work must still be done. Finally, the algorithm is
illustrated with a numerical example.



2. Main results

All rings will be commutative and with 1. A von
Neumann regular ring, also called absolutely flat ring,
is a ringR such that for any € Rthere existx such that
a= ax. There are many equivalent conditions, for ex-
ampleRis zero-dimensional and has no nonzero nilpo-
tent elements, or every finitely generated ideal is prin-
cipal (i.e.Ris Bézout) and generated by an idempotent
(see [5]), or every element is the product of a unit with
an idempotent. See [3, Lemma 10]. An important fact
we need to know is thd is an elementary divisor ring,
i.e. for anyn x mmatrix B overR there exist invertible
matricesP € GL,(R) andQ € GLn(R) such thatPBQ
is diagonal, with diagonal entriedi|dy|---|d;, where
r = min{n,m} (see [3, Theorem 11]). Als&® has Bass
stable range 1: ifa,b) = R, there existk such that
a+ bkis a unit ofR (if u,v are units such that® = ua
andb? = vb, we can také = 4-2).

We are now ready to prove our main result.

Theorem 1 (Normal form for single-input systems)
For a commutative ring R, the following statements are
equivalent:

() Risvon Neumann regular.

(i) Any single input systerfA b) of size(n, 1) over R
is feedback equivalent to one in the form:

x %k * dy

dz * * 0
A= |0 d3 = b= 7

0 - 0 dy * 0

vyith each ¢gidempotent, and all the's in row i of
A orthogonal to ¢

Proof. (i) = (i) Let (A, b) be a single-input system over
a von Neumann regular ring, with A€ R™", b e R".
The proof will be done by induction om If n=1, the
system is just a pair of scalata,b). Putb = p~id,
with p a unit andd idempotent. Then(a,b) is feedback
equivalent to the system

(pap *+ pb(—a), pb) = (1 - d)a,d)

in the required normal form.
Letn> 1. As R s an elementary divisor ring,
there exists an invertible matrik such thaty = Pb=

%l] Consider the matri® = PAP~1 partitioned as

[all alz] , with Agp € RP=Dx("-1) gy € Rand the
a1 Az

remaining blocks of appropriate sizes. Applying induc-
tion to the systenfAy,, az1) of dimensionn—1, there
exists an(n— 1) x (n— 1) invertible matrixP; and a
matrix K1 € R™("-1) sych that

(Az2,821) = (PLA2P] Y + PrapiKy, Praps)

is in the required normal form, with associated idem-
potent elementd,, ..., dy, and eaclhd; orthogonal to all

the«’s in row (i — 1) of AAQ/Z:

* * * dz
d3 * * 0
App= |0 da 8 =
0 - 0 dy = 0
Now, define the matrix®’ = é _léipl}, with in-

1 K
/-1 _ 1
verse P~ = [O P{l

(PAP~L PY) of the form

} and consider the system

* * di
Piag1 PiARP P+ PlanKe || 0] )"

At this point,(PPA'P'~1, P’b') is almost in reduced form.
Finally, denoting by the first row ofP A'P'~, we see
thatv — div is orthogonal tod;, hence we can define
K’ = —vand it follows that the system

(Ab) = (PAP 1+ POK, PY)

is feedback equivalent 1@V, B') (and thus equivalent to
(A,B)) and has the desired form, which proves (ji).

(i) = (i). Conversely, we will prove that any
finitely generated ideal is principal and generated by an
idempotent element. Létbe an ideal generated by the
entries of some column vectbre R, and consider any
system of sizen,1) of the form (A,b). By (ii), there
exists an invertible matri such thafbis the column
vector [d1,0,...,0]', with d; idempotent. BuPb also
generates$, so we are finished. O

This normal form is similar to that obtained for
Bézout domains in [2]. Also, if the firgt elementgd;
are equal to 1, we recover the reduced form associated
to the residual rank obtained in [6, Proposition 2.5]
for rings such that unimodular rows can be completed
to invertible matrices. Finally, if all the;'s are equal to
1, the system is reachable and the normal form is simply
the classical controller canonical form.

Now, observe that the proof of (8 (i) is in some
sense constructive, which gives rise to an effective al-
gorithm, if the ringRis such that Hermite normal forms
are computable.



Algorithm 2 (NormalForm) .-
e INPUT: matrices Ac R™" b e R".

e OUTPUT: matricesP,K such that (PAP~1 +
PbK,Pb) is in normal form.

o STEP 1: Find P such that Pb [%] is in Hermite
normal form. If necessary, multiply P by a unit to
obtain d idempotent.

e STEP 2: if n= 1, return with output(P = P.K =
—A). If not, continue with STEPS 3...6.

e STEP 3:
[311 a12]
ag1 Ag2 "

Extract (A, a1) from PAP! =
e STEP 4: Recursive call with inp#;,,a1) and
output(P,Kj).

e STEP 5: Define P= [(1) _'é,ipl] and K = —(first
row of PAP'~1),

e STEP 6: Return with outpyf = PP,K = K/).

Next, we determine how thd’s are related to the
structure of the system.

Proposition 3 (Thed;’s and the system'’s structure)
Let> = (A,B) be a system of siz@, 1) over a ring R
in the normal form of Theorem 1:

* * * di

d2 * * 0
A= 0O d3 * - = B—

0 -~ 0 dn 0

with d idempotents and thes in row i of A orthogonal
to d. If we denote byjf=d;---d;, fori=1,...,n, one
has:

(i) The reachability matrix AB is diagonal. Con-
cretely:
f, 0O -~ O
0o f, - 0
AB=|. . .
0 O fn

(i) Foreachi=1,2,...,n, one has

N> = fiRa f,Re - & fiR

Proof. Since all thex’s in row i of A are orthogonal

to d;, the proof of (i) is immediate, and then for any

i=1,...,n, (i) follows by looking at the first columns

of A*B, which generat&=*. O
Unfortunately, although thds are closely related

with the system’s structure, they do not characterize the

feedback equivalence, nor do tRemodulesN;, as will

be seen in the next examples.

Example 4 The systemg2,3) and(4,3) over the von
Neumann regular rinQR = Z/(6Z) are in reduced
form with the same associated elemdpnt= 3 and the
same submodul®l;, but are not feedback equivalent.
An equivalence would imply an equality of the form
p2p L+ p3k = 4, i.e. 2= 3pk, which is impossible.

Example 5 Let R be a von Neumann regular ring and
€ = eany idempotent which is not a unit (if no sueh
exists, therRis a field). The system

z:<A=[2 eol}’B:{SD

is in reduced form with associated elemethits- d, = e.
Consider the matrices
P= [ ©

l1-e
l1-e 2e-1}|’ l1-e e

pl_ { 1 1—e] _
Then, 3 is feedback equivalent t&’ = (PAP~,PB),
which is of the form:

e—1 0| |e
1 ol’|0]| /)"
Therefore,¥’ is in reduced form with associated ele-

ments{d} = e d, = 1}, which cannot be obtained from
those ofZ by multiplying with units.

We conclude with a numerical example.

Example 6 We have used the PARI-GP calculator to
implement Algorithm 2 for systems over von Neumann
regular ringsR=7Z/(dZ) , whered is a squarefree in-
teger. Here it is shown how the algorithm works on a
randomly generated example of fixed dimensioa 6
and working modula = 30:

12 24 13 6 0 1 22
2 25 16 11 6 2 9
A 13 27 29 7 15 b— 7
6 7 6 28 20 3|’ 7
28 2 17 22 2 1 1
21 5 26 25 24 2 5



Running the algorithm, we obtain

12 4 10 12 2 2
13 11 28 21 7
28 12 17 12 23 2

P =16 6 23 2 14 21’
28 1 4 24 19 O
24 26 11 7 7 1
K = [12 15 5 21 14 2§
which yield the normal forniPAP~1 + PbK, Pb) =
0O 0 0o 0 0 O 1
16 15 0 15 0 1 0
0 1.0 0 0 O 0
0 0 1 0 0 o0”]0
0O 0 O 6 25 2 0
0O 0 O O 25 6 0

The above system is in the normal form of Theorem 1,
because 16,6, 25 are idempotents, and the following
orthogonalities hold: 1615= 0= 6-25. Finally, the
reachabilty matrix of the normal form is computed:

1 0 0 0 O

0 16 0 0 O
0 0 16 0 O
0 0 0 16 O ’
0O 0 0 O 6
0O 0 0 O O

thus obtaining the structure of all the moduld;(é’b).

3. Conclusion

In this paper we have been able to give a precise al-
gebraic characterization (von Neumann regular rings)
to a linear system’s property (the equivalence of any
single-input system to a normal form). The normal form
obtained is associated to a collection of principal ideals
which allow the computation of all the submodulds
associated to a system. The following question still re-
mains open: How can the normal form be transformed
into a canonical form?
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