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ABSTRACT 
This paper presents the modelling and control of a laboratory helicopter twin rotor MIMO system using the MatLab package. 
Firstly, we provide an overview of the system model, secondly, we compare the behaviour of fractional and integer order 
controllers used a PSO algorithm for the controller optimization in order to obtain the minimum error. Finally, we analyse the 
system performance and the results obtained with the real helicopter show that fractional algorithms are smoother than 
conventional PID. Both controllers reveal good output responses but the PID needs more energy to perform the same task.  
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1.  Introduction 
 
This paper presents several control techniques for a 
laboratory helicopter model. We adopt the Twin Rotor 
Mimo System (Feedback – TRMS) [1] and we compare 
the results of integer and fractional order control 
algorithms. We consider the dynamics of the helicopter 
system with two degrees of freedom (dof) [2, 3] and 
present several real-time experiments of the closed loop 
system.  
Figure 1 shows a laboratory model of the Twin Rotor in 
two different views. The beam is joined to its base 
through an articulation and has two propellers driven by 
DC motors. This articulated joint allows the beam to 
rotate so that its ends move on spherical surfaces. A 
counter-weight fixed to the beam determines a stable 
equilibrium position. 
The rotors are positioned perpendicularly to each other, so 
that the movements in the vertical and horizontal planes 
are affected by the thrust of one propeller. 
 

      
Figure 1 - Two views of the twin rotor MIMO system. 

 

The control signals consist in the input voltages of the DC 
motors. The measured signals are the two position angles 
that determine the position of the beam in the space, and 
the angular velocities of the rotors. The positions are 
measured using incremental encoders, and the angular 
velocities are reconstructed by a simple differentiation 
with a second-order filtering of the measured angles. 
The paper is organized as follow. Section two gives an 
overview of the system model. Section three discusses the 
conventional integer and the fractional order algorithms. 
Sections four and five present the particle swarm 
optimization and the controller’s parameters optimization, 
respectively. Section six analyses the simulations results. 
Finally, section seven outlines the main conclusions.  
 
 
2.  Mathematical Model 
 
The helicopter has two dof, namely, the rotation of the 
helicopter body with respect to the horizontal axis and the 
rotation around the vertical axis. Each axis has one 
potentiometer for measuring the correspondent angle. The 
helicopter can move in the range −170º <αh< 170º, and 
−60º <αv< 60º, around the horizontal and vertical axis, 
respectively. The inputs of the model are the motor 
voltages Uh and Uv affecting the main and tail rotors. The 
output command must match the capabilities of the 
hardware board that is capable to outputing a [0, 5] Volt 
signal. This signal is shifted in the amplifier to create ±2.5 
Volt capability required to command the drive motor in 
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both directions. When no control signals are applied, the 
helicopter will tend to position at αh = −60º. 
 

Table 1 – List of symbols 

Variable Description Units 
[SI] 

αh 
Horizontal position (azimuth position) of 
the model beam 

[rad] 

Ωh 
Angular velocity (azimuth velocity) of the 
model beam 

[rad/s] 

Uh Horizontal DC-motor voltage control input [V] 

Gh 
Linear transfer function of tail rotor DC-
motor 

 

H Non-linear part of DC- motor with tail rotor [rad/s] 
ωh Rotational speed of tail rotor [rad/s] 

Fh 
Non-linear function (quadratic) of 
aerodynamic force from tail rotor 

[N] 

lh 
Effective arm of aerodynamic force from 
tail rotor 

[m] 

Jh 
Non-linear function of moment of inertia 
with respect to vertical axis 

[Kg.m2] 

Mh Horizontal turning torque [Nm] 
Kh Horizontal angular momentum [Nm.s] 
fh Moment of friction  force in vertical axis [Nm] 

αv 
Vertical position (Pitch position) of the 
model beam 

[rad] 

Ωv 
Angular velocity (Pitch velocity) of the 
model beam. 

[rad/s] 

Uv Vertical DC-motor voltage control input [V] 

Gv 
Linear transfer function of main rotor DC-
motor 

 

v 
Non-linear part of DC-motor with main 
rotor 

[rad/s] 

ωv Rotational speed of main rotor [rad/s] 

Fv 
Non-linear function (quadratic) of 
aerodynamic force from main rotor 

[N] 

lv Arm of aerodynamic force from main rotor [m] 

Jv 
Moment of inertia with respect to 
horizontal axis  

[Kg.m2] 

Mv Vertical turning moment [Nm] 
Kv Vertical angular momentum [Nm.s] 
fv Moment of friction force in horizontal axis [Nm] 

f Vertical turning moment from 
counterbalance 

[Nm] 

Jhv Vertical angular momentum from tail rotor [Nm.s] 

Jvh 
Horizontal angular momentum from tail 
rotor 

[Nm.s] 

gvh 
Non-linear function (quadratic) of reaction 
turning 

[Nm] 

ghv 
Non-linear function (quadratic) of reaction 
turning 

[Nm] 

t Time [s] 
L Laplace Operator  
s Laplace variable  
z Z Transform variable  

 
The physical model is developed under some simplifying 
assumptions [4]. It is assumed that friction is of viscous 
type and that the propeller air subsystem can be described 
in accordance with the postulates of flow theory. 
First, we consider the rotation of the beam in the vertical 
plane, around the horizontal axis. Having in mind that 
driving torques are produced by the propellers, the 
rotation can be described by the pendulum motion 
principle. From the Newton second law of motion we 
obtain: 
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Figure 2 – The twin rotor mimo system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – The rotation of the helicopter system. 
 
Tables 1 and 2 depict the list of symbols and the 
helicopter parameters, respectively. To determine the 
moments of gravity applied to the beam, making it to 
rotate around the horizontal axis, we consider the situation 
of in figure 4, and: 
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Table 2 – The parameters of the Helicopter 
Variable Value Units[SI] 

mmr 0.228 [kg] 
mm 0.0145 [kg] 
mtr 0.206 [kg] 
mt 0.10166 [kg] 
mcb 0.068 [kg] 
mb 0.022 [kg] 
mms 0.225 [kg] 
mts 0165 [kg] 
lm 0.24 [m] 
lt 0.25 [m] 
lb 0.26 [m] 
lcb 0.13 [m] 
rms 0.155 [m] 
rts 0.10 [m] 

 
where rms is the radius of the main shield and rts is the 
radius of the tail shield. 
 
Also: 
 

( )mvmv FlM ω=2  (5)
 
where Fv(ωm) denotes the dependence of the propulsive 
force on the angular velocity of the rotor. 
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To determine the moments of propulsive forces applied to 
the beam consider the situation given in figure 4. 
Finaly: 
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where Ωv is the angular velocity around the horizontal axis 
and Kv is a constant. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – Gravity forces in the TRMS, corresponding to the 
return torque, which determine the equilibrium position of the 
system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 – Propulsive force moment and friction moment in the 
TRMS. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 − Moments of forces in horizontal plane. 
 
According to figure 6 we can determine components of the 
moment of inertia relative to the horizontal axis yielding:  
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Notice, that this moment is independent of the position of 
the beam. 
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Similarly, we can describe the motion of the beam around 
the vertical axis, having in mind that the driving torques 
are produced by the rotors and that the moment of inertia 
depends on the pitch angle of the beam. The horizontal 
motion of the beam (around the vertical axis) can be 
described as a rotational motion of a solid mass: 
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To determine the moments of forces applied to the beam, 
making it to rotate around the vertical axis, we consider the 
situation shown in Figure 6, yielding: 
 

vthth wFlM αcos)(.1 =  (12)
 
where Fh(ωt) denotes the dependence of propulsive force 
on the angular velocity of the tail rotor, and: 
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The helicopter motion can be describe by the equations: 
 

vJ

HGvKvmvFml

dt
vdS −+Ω−

=
)(ω

 (18a)

[ ]vCBAgG αα sincos)( −−=  (18b)

( ) vh CBAH α2sin
2
1 2 ++Ω=

 
(18c)

v
v

dt
d

Ω=
α

 
(18d)

v

ttrv
v J

JS ω+
=Ω

 
(18e)

h

hhvthth

J
KFl

dt
dS Ω−

=
αω cos)(

 
(18f)

dt
d h

h
α

=Ω
 

(18g)

h

vmtmr
hh J

J
S

αω cos
+=Ω

 
(18h)

 
The angular velocities depend on the DC motors: 
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Finally, the mathematical model becomes a set of six non-
linear equations, namely: 
 

[ ]Tvh UU=U  (20)

[ ]Tvvvvhhhh uSuS αα=X  (21)

[ ]Tmvvthh ωαωα ΩΩ=Y  (22)
 
where U is the input, X is the state and Y is the output 
vector and can see in Figure 7. 
 
3.  Twin Rotor Mimo Controllers 
 
3.1. Integer Order Algorithms 
 
The PID controllers are the most commonly used control 
algorithms in industry. Among the various existent 
schemes for tuning PID controllers, the Ziegler-Nichols (Z-
N) method is the most popular and is still extensively used 
for the determination of the PID parameters. It is well 
known that the compensated systems, with controllers 
tuned through this method, have generally a step response 
with a high percent overshoot. Moreover, the Z-N 
heuristics are only suitable for plants with monotonic step 
response [5-7]. 
 
The transfer function of the PID controller is: 
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where E(s) is the error signal and U(s) is the controller’s 
output. The parameters K, Ti, and Td are the proportional 
gain, the integral time constant and the derivative time 
constant of the controller, respectively. 
The design of the PID controller consist on the 
determination of the optimum PID parameters (K, Ti, Td) 
that minimize J, the integral of the square error (ISE), 
defined as: 
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where αi(t) is the step response of the closed-loop system 
with the PID controller and αir(t) is the desired step 
response. The control architecture can be resumed in the 
block diagram of Figure 8, with the two independent 
controllers 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3.2. Fractional Order Algorithms 
 

In this section we present the Fractional Order (FO) 
algorithms adopted in the two control loops. 
The mathematical definition of a derivative of fractional 
order α has been the subject of several different 
approaches. For example, we can mention the Laplace 
and the Grünwald-Letnikov definitions: 
 

Dα[x(t)] = L−1{sα X(s)} (25a)

( )[ ] ( ) ( )
( ) ( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+−Γ+Γ
+Γ−

= ∑
∞

=
→

1
0 11

111lim
k

k

h

α khtx
kkh

txD
α
α

α
 (25b)

 
 

 
Figure 8 –Twin Rotor Mimo block PID control diagram 

 
where Γ is the gamma function and h is the time 
increment. 
In our case, for implementing FO algorithms of the type 

PIDα, C(s) = KP + 
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order discrete-time Pade approximation (ai, bi, c i, di ∈ ℜ, 
k = 4): 
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where KPh and KPv are the tail and rotor controller gains, 
respectively. 
 
 
4. Particle Swarm Optimization  
 

Particle swarm optimization (PSO) algorithm was 
developed by Kennedy and Eberhart in 1995 [11]. This  
optimization technique, based on a population search, is 
inspired by social behavior of bird flocking fish 
schooling. An analogy is established between a particle 
and an element of swarm. These particles fly trough the 
search space following current optimum particles. In each 
algorithm iteration, a particle movement is characterized 
by two vectors representing its current position x and 
velocity v.  

 
The velocity, of a particle, is changed according the 

cognitive knowledge b (the best solution found so far by 
the particle) and the social knowledge g (the best solution 
found by the swarm). The weight of each knowledge, in 
the velocity update, is different according with the 
random values φi, i = {1, 2}. Theses values are random 
factor follow a probabilistic uniform low φi ~U[0, φi max] 
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Figure 7 – The MIMO block diagram of the twin rotor 



 
Figure 9 − Particle Swarm Optimization 

 
where I and t are the inertia and the iteration time 
respectively. 
 
PSO is a very attractive technique among many other 
population based algorithms, because it has only a few 
parameters to adjust. PSO have been used with success in a 
vast number of applications, such as robotics [12, 13] and 
electrical systems [14].  In this paper the PSO will be 
adopted in the controller tunning. 
 
 
5. Parameters Optimization 

 
 
In this section is used a PSO algorithm for the controller 

optimization. The PSO determines the optimal 
parameters, Kp, Kd and Ki, of the control system, in order 
to obtain the minimum error when the helicopter moves 
between two workspace points. Since the parameters of 
the model are unknown, the PSO will evaluate the fitness 
particles of the real system. Therefore, to evaluate each 
particle, the PSO sends the command with the particle 
parameters to the helicopter in order to move it and the 
position error is measured.  

In the experiments it is adopted φi max = 1.6 and 10 
particle population during 100 iterations. The parameter 
space is shown in Table 3. The helicopter moves between 
the point A ≡ {0º, 0º} degrees up to the point B ≡ {12º, 
0º} for main rotor perturbation and moves between the 
point A ≡ {0º, 0º} degrees up to the point B ≡ {0º, 12º} 
for tails perturbation. Table 4 depicts the final values 
obtained for each gain. 

 
 

6. Controller Performances 
 

This section analyzes the system response under the 
control action of the classical PID and PIDα algorithms.  

In order to study the system dynamics we apply, 
separately, rectangular pulses, at the tail and main rotor 
references, that is, we perturb the reference with {δαh, 
δαv} = {12º, 0º} and {δαh, δαv } = {0º, 12º}. These 
perturbations have an duration of 15 seconds. The 
experimental results are presented here to compare the 

closed loop performance of the Integer Order (IO) and 
Fractional Order (FO) control algorithms.  

The PSO determines the optimal parameters of the 
controller and replace them in the helicopter.  

Figure 10 and Table 5 analyze of the time response 
characteristics, for the tail and the rotor perturbations and 
depict the statistics, of the voltage amplitudes for the 
perturbation δαv and δαh. 

Figures 11 and 12 show the required voltages Uv and Uh 
to execute the task.  

The PIDα controller reveals better performance, namely 
is faster and produces smaller errors than the PID. The 
time response of the PIDα controller presents a softer 
response a smaller overshoot and reduces the strong effect 
of the input and output cross coupling. 

In figure 11 it is shown the effect of the motor saturation 
in the amplifier, in the ±2.5 Volt ranges required to 
command the drive motor in both directions. For a pulse 
perturbation at the αhr = 12º the PID requires larger Uv 
voltages than the PIDα. For a pulse perturbation αvr = 12º 
the required Uv voltages for one PID and PIDα are almost 
identical, but for the horizontal axis the PIDα need more Uh 
voltage than the PID. 
 
7. Conclusions 
 

In this paper a two rotor MIMO helicopter system is 
studied and several experiments are developed. The 
mathematical model of TRMS is derived, and its 
dynamical characteristics, such as equilibrium position, 
propeller thrust and gravity compensation are analyzed. 
For this system are compared integer and fractional 
algorithms. The results of the PIDα controller reveal better 
performances than the classical integer order controller.  
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Table 3.  Initial limits for each gain.  

  kp ki kd αr αt 
Main rotor [20-10] [15-5] [10-5] PID Tail rotor [15-5] [5-1] [10-5]  

Main rotor [0.1-10] [0.1-10] [0.1-20] [0.7-0.9] [0.7-0.9] PIDα Tail rotor [0.01-10] [0.1-10] [90-110] [0.7-0.9] [0.7-0.9] 
 

Table 4. The final values for each gain. 
 Pulse perturbation  Kp Ki Kd αr αt 

Main rotor 14.939 5.1871 6.1128 Main rotor Tail rotor 9.5506 2.2457 9.4216 
Main rotor 13.802 11.309 6.7889 PID 

Tail Tail rotor 10.806 1.2375 7.8844 

 

Main rotor 1.2041 2.4074 4.0891 Main rotor Tail rotor 0.7691 6.9722 98.272 0.8777 0.8772 

Main rotor 3.7969 3.9100 3.9135 PIDα 
Tail Tail rotor 0.5593 3.6052 99.507 0.8716 0.8893 
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Figure 9 − Time responses of the experimental 2−dof helicopter for αv and αh using the PID and PIDα controllers, for a pulse perturbation 

at the αhr = 12º and αvr = 12º position reference for sampling time h = 0.01 s. 
 

Table 5. Time response and statistical analysis characteristics for δαv and δαh at the reference. 
 PO% ess 

[deg] 
Tp 
[s] 

Ts 
[s] Uv(Mean) Uh(Mean) σv  σh δαv δαh 

2.265 0.29 1.79 2.28 1.3404 0.1330 0.9374 0.9275 1 0 PID 
20.58 0.079 1.89 2.02 1.3626 0.4274 0.5525 0.7728 0 1 
2.265 0.82 4.05 4.26 1.3545 0.2274 0.4972 1.3922 1 0 PIDα 
6.83 0.820 3.76 4.31 1.2619 0.4488 0.3881 1.0396 0 1 
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Figure 10 − The experimental 2−dof helicopter rotor and tail voltage statistical distribution using the PID vs PIDα controllers, for a pulse 

perturbation δαv = 12º at the αvr position reference for sampling time h = 0.01 s. 
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Figure 11 − The experimental 2−dof helicopter rotor and tail voltage statistical distribution using the PID vs PIDα controllers, for a pulse 

perturbation δαh= 12º at the αhr position reference for sampling time h = 0.01 s.
 


