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Abstract: The problem under consideration is the ℓ1 optimal steady-state tracking
a bounded reference signal for the first order discrete-time plant. Parameters of the
plant and upper bounds for perturbations and exogenous disturbance are assumed
to be unknown to controller designer. It is shown that associated nonconvex
problem of optimal identification is computationally tractable and can be used
for data-based optimal steady-state tracking.
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1. INTRODUCTION

Identification for robust control is an area of ac-
tive research in the last two decades. In spite of
considerable achievements, the recent special is-
sues of Automatica (2005, V.41, No. 3) and IEEE
Transactions on Automatic Control (2005, V. 50,
N. 10) on system identification show that many
problems related to the improvement of systems
robust performance remain open. The most coher-
ent approach to synthesis of optimal control sys-
tems based on identification is to treat the control
criterion as the identification criterion. As noted
in Mäkilä, Partington and Gustafsson (1995), so
highly control-oriented approach to identification
leads usually to extremely difficult optimization
problems. A general approach to identification-
based suboptimal synthesis in the ℓ1 setup was
proposed in Sokolov (1985a,1985b). The approach
was based on finding a model that is not falsi-
fied by data and delivers the best (or acceptable)
value of the control criterion. This approach was
applied to the synthesis of adaptive control in
Sokolov (1985a,1985b) and adaptive robust con-
trol in Sokolov (1996,2001b). Similar approach
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to data-based robust synthesis was discussed in
Dahleh and Doyle (1994) at the methodological
level. In Krause, Stein, and Khargonekar (1992),
the idea of optimal identification for robust con-
trol in the H∞ setup was also discussed at the
methodological level under the name of preferen-
tial identification.

The purpose of the present paper is to show that
the ℓ1 optimal, within the prescribed accuracy,
robust steady-state tracking is computationally
tractable for unknown first order plant under
bounded exogenous disturbance and the induced
norm bounded perturbations in output and con-
trol.

2. PROBLEM STATEMENT

Consider the first order discrete-time plant

y(t) = ay(t − 1) + bu(t − 1) + d(t) ∀t ∈ N (1)

where y(t) ∈ R is the output, u(t) ∈ R is the
control and d(t) ∈ R is the total disturbance.
The coefficients a and b are unknown to controller
designer. The total disturbance d is of the form



d := δww + δy∆1y + δu∆2u , (2)

where w is a normalized bounded exogenous dis-
turbance,

‖w‖ℓ∞ = sup
t

|w(t)| ≤ 1 , (3)

and ∆1 and ∆2 are normalized perturbations in
output and control such that for all t ∈ N

|(∆1y)(t)| ≤ sup
t−µ≤s<t

|y(s)| , (4)

|(∆2u)(t)| ≤ sup
t−µ≤s<t

|u(s)| . (5)

Without loss of generality, the memory of pertur-
bations µ is assumed to be known to controller
designer (see Remark 1 at the end of this section).
In terms of mappings, inequalities (4) and (5)
mean that ∆1 : ℓ∞ 7→ ℓ∞ and ∆2 : ℓ∞ 7→ ℓ∞
are strictly causal maps with bounded memory
(see Sokolov, 2001a, for detail) and their gains
are not greater than one. The nonnegative scalars
δw, δy, δu represent unknown upper bounds for
exogenous disturbance and perturbations.

Define the vector of unknown upper bounds

δ := (δw, δy, δu)T ,

the vector of unknown coefficients

ξ := (a, b)T ,

and the extended parameter vector

θ := (ξT , δT )T .

The prior information about the unknow ξ is of
the form

ξ ∈ Ξ (6)

where Ξ is a known prior set.

Let r ∈ ℓ∞ be a given reference signal and K be
a causal controller of the form

u(t) = K(yt
0, u

t−1
0 , r) ∀t ∈ N (7)

where
yt
0 = (y(0), · · · , y(t)) ,

ut−1
0 = (u(0), · · · , u(t − 1))

are measurement data by the time instant t.

The steady-state robust performance of the closed
loop system (1) and (7) will be described by the
control criterion

J(K, ξ, δ, µ) := sup
∆1, ∆2

sup
w

lim sup
t→∞

| y(t) − r(t) |(8)

where the suprema are taken on the sets of dis-
turbances w and perturbations ∆1,∆2 satisfying
the constraints (3), (4), and (5), respectively.

Let the desired controller K0(ξ) for the plant with
the known coefficients ξ be of the form

u(t) = −
a

b
y(t) +

1

b
r ∀t ∈ N. (9)

Denote the controller (9) by . This controller
provides the equality

y(t) − r = d(t) ∀t ∈ N (10)

for the output y of the plant (1) and turns out
to be optimal with respect to the control criterion
(8) (see Remark 2 at the end of this section).

Let ‖r‖ss := lim supt→∞ |r(t)| and ‖a(q−1)r‖ss :=
lim supt→∞ |r(t) − ar(t − 1)|. The steady-state
robust performance of the closed loop system (1)
and (9) is described in the next theorem.

Theorem 1. The controller K0(ξ) described by
the equation (9) ensures the inequality

J(K0(ξ), ξ, δ, µ) ≤ J(K0(ξ), ξ, δ,+∞) = (11)

δw + δy‖r‖ss + δu
‖a(q−1)r‖ss

|b|

1 − δy − δu
|a|
|b|

. (12)

If the signals r and a(q−1)r get into neighborhoods
of their ss-limits uniformly often (see Sokolov,
2001a for detail), then

J(K, ξ, δ, µ) ր J(K0(ξ), ξ, δ,+∞) (13)

as µ → +∞.

The inequality (11) and the representation (12)
follow from Theorem 8 and the monotone conver-
gence in (13) follows from Theorem 6 in in Sokolov
(2001a).

Note also that the positiveness of the denominator
in (12) is the necessary and sufficient condition of
robust stability against infinite memory perturba-
tions (µ = +∞).

Problem formulation. The problem of data-based
suboptimal robust synthesis is to find a controller
K of the form (7) that ensures, with the prescribed
accuracy, the inequality

I(K, ξ, δ, µ) ≤ J(K0(ξ), ξ, δ,+∞) (14)

for the output y of the plant (1) with the unknown
vector θ = (ξT , δT )T .

Remark 1. The classical robust analysis and syn-
thesis in Khammash and Pearson (1991,1993) and
in Khammash, Salapaka, and Vanvoorhis (2001)
deals with known systems under zero initial con-
ditions, the class of infinite memory perturbations



associated with µ = +∞ and the uniform control
criterion of the form

I(K, ξ, δ,+∞) := sup
∆1, ∆2

sup
w

sup
t∈N

| y(t) | (15)

For control of unknown plant, we have to replace
the uniform control criterion (15) by the steady-
state control criterion (8) to have a time for es-
timating unknown parameters. All the results on
the robust stability and robust performance ob-
tained in Khammash and Pearson (1991,1993) re-
main true for the steady-state control criterion (8)
and nonzero initial conditions, if the perturbations
∆1 and ∆2 are additionally restricted to be of
finite or fading memory (see Khammash, 1995 for
detail). However, both of these properties are not
verifiable by measurement data. In order to have
an opportunity to verify the prior assumptions
about perturbations, we consider perturbations
with bounded memory of the form (4) and (5).
In view of (13), the more the memory of pertur-
bations µ, the lesser the conservatism associated
with considering bounded memory perturbations
will be.

Remark 2. One can prove that the controller K0(ξ)
is optimal with respect to the control criterion
(8) against the class of fading or finite memory
perturbations, if |b| ≥ δu for the plant with |a| <
1. Since models with |b| < δu are of no practical
interest, they are excluded from consideration.

Remark 3. The controller K of the form (7)
is generally impractical in view of possible un-
bounded controller’s memory and the requirement
of bounded memory must be taken into account
under solving the stated problem.

3. OPTIMAL IDENTIFICATION FOR
CONTROL

Let yt
0 be the collection of the plant outputs under

some control actions ut−1
0 by the time instant t.

Definition. An extended parameter vector θ̂ =
(ξ̂T , δ̂T )T is said to be unfalsified by the data
yt
0, u

t−1
0 , if there exist an exogenous disturbance

w and perturbations ∆1,∆2 satisfying constraints
(3), (4), and (5), respectively, and such that the
equation (1) associated with the extended param-

eter vector θ̂ is satisfied on the time interval [0, t].

The set of all unfalsified vectors θ̂ is clearly

Θt := { θ̂ | |y(τ) − ây(τ − 1) − b̂u(τ − 1)| ≤ δ̂w+(16)

δ̂y sup
τ−µ≤s<τ

|y(τ)|+δ̂u sup
τ−µ≤s<τ

|u(τ)|, τ = 0, . . . , t}

and is described by the system of 2(t + 1) linear
inequalities. Introduce simplifying notation

J(θ) := J(K0(ξ), ξ, δ,+∞) .

The problem of optimal identification for the data
yt
0, u

t−1
0 is defined as

min
θ̂∈Θt

J(θ̂) (17)

and the minimizer in (17) is the best unfalsified

vector θ̂.

According to Dahleh and Doyle (1994), “the basic
control problem for a given process can be stated
as follows: Given some prior information about the
process and a set of finite data, design a feedback
controller that meets given performance specifica-
tions”. The problem (17) is the cited basic control
problem meeting the strongest performance spec-
ification in the form of the optimality of controller
to be designed.

The application of (17) in on-line identification
faces with the following problems:
1. The computational complexity of the noncon-
vex programming in (17).
2. The requirement of bounded memory noted in
Remark 3 above.
3. What is the behavior of the closed loop system
with the minimizers in (17) as current estimates?

Problem 1 is discussed in this section and the
problems 2 and 3 in the next one.

Approximate solution of the problem (17) is based
on solution of optimal errors quantification prob-
lems on a grid in the prior set Ξ. Without loss of
generality, we assume that the prior set Ξ is of the
form

Ξ = [ a , ā ] × [ b , b̄ ]

with known upper and lower bounds a, ā, b, b̄ and
b b̄ > 0.

Choose arbitrary ε1 > 0 and define

ξi,j = (ai, bj)
T := ( a + iε1 , b + jε1 )T ,

i = 0, 1, . . . , n, an ∈ [a − ε1, a], j = 0, 1, . . . ,m,
bm ∈ [b − ε1, b], so that the grid step is ε1. For
each grid point ξi,j consider the linear-fractional
program

Jeq(ξ̂) := min
{δ̂| θ̂∈Θt}

J(ξ̂, δ̂) , (18)

which is called in Sokolov (2005) the problem of
optimal errors quantification. It is well known that
this linear fractional problem is reducible to linear
programming by introducing a new variable (see,
e.g., Boyd and Vandenberghe, 2003 for detail).

Approximate solution of the problem (17)

θε1
:= (ξT

ε1
, δT

ε1
)T (19)

is defined as follows :



ξε1
:= argmin

ξi,j

Jeq(ξi,j) (20)

and δε1
is the solution to the problem (18) for the

coefficient vector ξε1
:

J(ξε1
, δε1

) = Jeq(ξε1
) .

It must be noted that the minimizations on a
fine grid by itself can not ensure approximate
minimization of a nonconvex cost function with
the prescribed tolerance for all linear constraints.
The tolerance of the solution (19) to the problem
(17) is possible to assess due to a specific inter-

connection between the cost function J(θ̂) and the
linear constraints in this problem.

Theorem 2. There exists C > 0 such that for any
data yt

0, u
t−1
0

J(θε1
) ≤ min

θ̂∈Θt

J(θ̂) + Cε1 . (21)

The proof of Theorem 2 is omitted.

So to solve the problem (17) with the ε1 tolerance,
the number of the linear fractional problems (18)
to be solved is in the order of 1/ε2

1.

4. OPTIMAL STEADY-STATE TRACKING

Solution of Problems 2 and 3 mentioned in the
previous section is based on the use of outer
approximations of the sets Θt. The estimation
algorithm below is similar to that in Sokolov
(2001b) with the only difference in the use of
the control criterion associated with the tracking
problem instead of the regulation problem.

The initial set estimate is of the form

E(−1) := { θ̂ = (ξ̂T , δ̂T )T | ξ̂ ∈ Ξ , δ̂ ≥ 0 }

where the inequality δ̂ ≥ 0 is taken component-
wise. Initial point estimate is of the form

θ(−1) := (ξT (−1), 0, 0, 0)T

with arbitrary ξT (−1) ∈ Ξ. Let θ(t − 1) = (ξ(t −
1)T , δ(t− 1)T )T be a point estimate and E(t− 1)
be a set estimate of the unknown θ at the time
instant t − 1. Define auxiliary notation

ψ(t − 1) := (y(t − 1), u(t − 1))T ,

η(t) := sign(y(t) − ξ(t − 1)T ψ(t − 1)) ,

my(t) := sup
t−µ≤s<t

|y(s)|, mu(t) := sup
t−µ≤s<t

|u(s)| ,

φ(t − 1) := (η(t)ψ(t − 1)T , 1,my(t),mu(t))T .

Ω(t) := { θ̂ | θ̂T φ(t − 1) ≥ y(t)η(t) } .

Chose a pair of positive scalars ε1 and ε2, param-
eters of the estimation algorithm. Then the set
estimate E(t) is defined as follows. If

θ(t − 1)T φ(t − 1) ≥ y(t)η(t) − ε2|φ(t − 1)|

then E(t) := E(t − 1); otherwise

E(t) := E(t − 1) ∩ Ω(t) . (22)

If the set estimate E(t − 1) was not updated
then the point estimate θ(t − 1) is not updated
too. Otherwise θ(t) is defined as the approximate
solution of the problem

min
θ̂∈E(t)

J(θ̂) (23)

obtained by the algorithm described in section 3
with the grid step ε1.

The set estimation algorithm has a simple geo-
metric interpretation. At the time instant t − 1
the set estimate E(t − 1) is described by a part
of the linear inequalities in (16). New information
about the unknown vector θ at the time instant t
is of the form

|y(τ)−ây(τ−1)−b̂u(τ−1)| ≤ δ̂w+δ̂ymy(t)+δ̂umu(t)

and can be rewritten as a pair of linear in θ̂ in-
equalities. Only one of these inequalities, describ-
ing the half-space Ω(t), can be violated for the
point estimate θ(t−1). The set estimate E(t−1) is
updated if and only if the distance of the current
point estimate θ(t − 1) to the half-space Ω(t) is
greater than ε2. The update of E(t−1) according
to (22) with deleting redundant inequalities can
be effectively performed by the algorithm pro-
posed in Walter, Piet-Lahanier (1989).

Finally, the control action u(t) at the time instant
t is realized by the controller K(ξ(t)) :

u(t) = −
a(t)

b(t)
y(t) +

1

b(t)
r . (24)

The next theorem shows that the controller (24)
solves the stated problem with the prescribed
accuracy.

Theorem 3. Assume the unknow extended pa-
rameter vector θ satisfies the prior constraints

δy + δu

|a|

|b|
< 1 − κ , 0 ≤ δw ≤ δ̄w (25)

with known κ > 0 and δ̄w. Then there exist
positive C1, C2, ε̄1, ε̄2 such that for all ε1 ≤ ε̄1

and ε2 ≤ ε̄2 the estimation algorithm (22) and
(23) and the controller (24) ensure the following
properties of the closed loop system:

1. for all sufficiently large t

E(t) = E∞ := lim
t→∞

E(t) ,

θ(t) = θ∞ = (θT
c,∞, δT

∞)T := lim
t→∞

θ(t) ,



2. the output of the closed loop system satisfies
the inequality

lim sup
t→∞

| y(t) − r| ≤

J(K0(ξ), ξ, δ,+∞) + C1ε1 + C2ε2 .

(26)

The proof of Theorem 3 is omitted.

The inequality (26) means that the stated prob-
lem (14) can be solved with the desired accuracy.
The prior constraints (25) are nonrestrictive. In-
deed, the first of them is a slightly stronger condi-
tion of robust stability for the plant (1) controlled
by the optimal controller (9). The arbitrary small
constant κ and the arbitrary large upper bound δ̄w

simply exclude models with large values of J(θ).

5. SIMULATIONS AND CONCLUDING
REMARKS

The controlled plant is modeled by the equation

y(t) = 0.983y(t − 1) + 0.52u(t − 1) + d(t) (27)

where the total disturbance d is of the form

d(t) = 0.1 ρ0(t) + 0, 06 ρ1(t) max
t−5≤<t

|y(s)|+

0, 11 ρ2(t) max
t−5≤<t

|u(s)|

and ρj(t), t ∈ N, j = 0, 1, 2 are independent
uniformly distributed on [−1, 1] random sequences
so that the unknown vector of upper bounds is
of the form δ = (0.1, 0.06, 0.11)T . The prior
information about the unknown coefficient vector
ξ = (0.983, 0.52)T is of the form

ξ ∈ [ 0.7 , 1.2 ] × [ 0.2 , 1 ] .

The initial controller of the form (9), associated
with the prior initial estimate

ξ(−1) = ( 0.95 ; 0.4 )T ,

is not updated on the time interval [0, 300]. The
control objective is in tracking the set point y =
50 so that the reference signal is

∀ t r(t) = 50 .

The corresponding error signal z(t) := y(t) −
r(t) on the time interval [0,300] is presented on
the upper plot in the Fig. 1. One can see a
considerable deflection from zero generated by the
inaccuracy of the initial estimate ξ(−1).

The approximate solution of the problem of op-
timal identification (17) for the data (y300

0 , u299
0 )

was computed using the relatively large grid step
ε1 = 0.05. Solution of the associated 11 × 17
linear fractional problems of errors quantification
(18) for the grid points ξi,j took 2.671 sec. on
the PC with AMD Athlon 64 3000+ processor.
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300 350 400 450 500 550 600
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Fig. 1. Error signals z(t) = y(t) − 50: zin – for
initial controller; zna – for nonadaptive con-
troller, associated with ξ(300); zad – for adap-
tive controller; zopt – for optimal controller
for known model.
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Fig. 2. The values of Jeq(ξi,j) for the grid step
ε1 = 0.05.

The values of Jeq(ξi,j) are presented in the Fig.
2. The minimal value of Jeq(ξi,j) was 4.6847 for
the grid point ξi,j = (1, 0.45)T . Then the Matlab
function fmincon was exploited for solution of (17)
using the coefficients (1, 0.5)T as initial points.
The approximate solution of (17) was

θ(300) = (0.9845, 0.4697, 0, 0.0732, 0)T .

Notice that the total disturbance was prescribed
entirely to the perturbation in output py. Then

J(θ(300)) = 3.9501 < 4.2022 = Jeq(ξ) <
4.6219 = J(θ) < 6.1604 = Jeq(ξ(−1)) .

Note that the middle values of Jeq(ξ) and J(θ) are
unknown to controller designer because the vector
θ is unknown. But they illustrate the properties
of the initial estimate ξ(−1) and the obtained
estimate θ(300).

The other 3 plots in Fig. 1 represent the follow-
ing signals. The signal zna = y(t) − 50 is the
error signal when the model was controlled by
the controller of the form (9) associated with the
coefficient vector ξ(300). The signal zad = y(t) −
50 is the error signal when the model was con-



trolled by the adaptive controller (24). Note that
identification problems (23) were solved using the
fmincon function instead of computations on grids
for all t > 300. Finally, the signal zopt = y(t)− 50
is the error signal when the model was controlled
by the optimal controller (9) in the case of the
known coefficient vector ξ. The simulations in all
three cases used identical samples of ρk(t).

The final estimate under the adaptive control (24)
was

θ(600) = (0.9843, 0.5037, 3.5425, 0, 0.0576)T

and the final best unfalsified value of the control
criterion was J(θ(600)) = 4, 0929, which is less
than J(θ).

The set estimates E(300) and E(600) computed
with the dead zone parameter ε2 = 0.0001 were
described both by 23 inequalities. The time of
computations for the time interval [0, 300] was
2.671 sec. and of all other computations for the
time interval [301, 600] – 4.828 sec.

Finally, the ranges maxt z(t) − mint z(t) for all
signals presented in Fig. 1 are 8.2926, 7.9889,
7.9889, 7.57 and the values of maxt |z(t)| are
6.1604, 4.3593, 4,3593, 3.8571, respectively. These
figures mean that both the fixed controller as-
sociated with the estimate θ(300) and the on-
line identification based controller provide equally
good robust performance, which is close to the ro-
bust performance of the optimal controller for the
known model. Note that the difference between
the signals zna and zad (maxt |zna(t) − zad(t)| =
0.3817) is difficult to see from their graphs.

The main merits of the identification algorithm in
this paper are as follows.

1. The identification algorithm is adequate to
the ℓ1 robust control theory and involves no
other assumptions about the uncertainty and the
exogenous disturbance.

2. All prior information regarding the plant model,
the uncertainty and the exogenous disturbance is
validated on-line and models falsified by data are
discarded.

3. The on-line optimal identification allows to
achieve the best possible result in the form of
the optimality of closed loop system against the
considered class of perturbations. The price for
this result is the necessity of large computations.
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