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Abstract

A Fermat-like principle of minimum time is formulated for nonlinear steady paths of fluid flow in  isotropic porous media. The principle describes an optimal nature of nonlinear paths in steady Darcy’s flows. An expression for the total path resistance leads to a basic analytical formula for an optimal shape of a steady trajectory in nonlinear flows of fluid. In the physical space an optimal path ensures the maximum flux or shortest transition time of the fluid through the porous medium. A sort of “law of bending” holds for the frictional fluid flux in Lagrange coordinates, which shows that - by minimizing the total resistance - a ray spanned between two given points takes the shape assuring that  its relatively large part resides in the region of lower flow resistance (a 'rarer' region of the medium). 

1. INTRODUCTION

Darcy’s Law is the basic constitutive relationship that describes fluid motion in porous media and that helps us to understand the movement of fluids in the Earth’s crust. Darcy’s Law states that the rate of fluid flow through a porous medium is proportional to the gradient of hydraulic head within that fluid. The constant of proportionality is the hydraulic conductivity; it is a property of both the porous medium and the fluid moving through this medium. When this conductivity is a known nonlinear function of a length coordinate x (set here purposely in the direction perpendicular to the conductivity gradient) a Fermat-like principle can be formulated for steady frictional flows in isotropic media, simple and composite. According to the principle, the shape of a steady trajectory of nonlinear frictional flow is the result of the maximum flux or shortest transition time of the fluid through the medium. This property makes one possible to predict shapes of related “rays” or paths of the fluid flow. This also leads to the description in terms of wave-fronts and related Hamilton-Jacobi theory which is derived in this paper from the optimization algorithm of the dynamic programming method. In a part our approach transfers to the realm of nonlinear Darcy’s flows some results obtained in earlier treatments of heat transfer in the energy and entropy representation [1, 2]. However, instead of performing the analysis in the realm of paths, we concentrate on the wave-front description of the fluid flow and the corresponding Hamilton-Jacobi theory The relevant physical picture refers to tracing of fluid propagation in Lagrange coordinates, where the fluid’s flow through the porous skeleton is attributed to motion of the same fluid particles rather than to the fluid’s passage through a fixed region of the physical space. When stressing differences between propagation of Darcy’s and optical rays, it may be shown that while the simplest optical rays are described by Euclidean and Riemmanian geometry, it is rather Finslerian geometry that is valid for Darcy’s rays. Applications of functional equations and the Hamilton-Bellman-Jacobi equation are effective when Bellman's method of dynamic programming [3] is applied to wavefronts. That method involves an alternative view: the observation of mass conduction in porous medium in terms of wave fronts rather than fluid paths. In this method potential functions describing the mimimum resistance or the minimum transition time are obtained in an explicit way by analytical or numerical approaches.

2. VARIATIONAL APPROACH TO NONLINEAR DARCY’S FLOW 

When a pressure field in a isotropic porous medium is imposed along with fixing the hydraulic head  gradient, the flow of the fluid in a permeable porous skeleton can be described in terms of 'rays', or paths of fluid flow in direction of hydraulic head gradient. Their deviation from straight lines results from a variable conductivity. In fact, frictional rays travel along paths satisfying the principle of minimum of entropy production [2], which seems at first glance quite different than the well-known Fermat principle of minimum time for optical rays. However, the principle assures the minimum resistivity of the path, which, in a dual problem, causes the maximum of fluid flux through the porous medium and makes the residence time of the fluid in this medium as short as possible. This is quite similar to Fermat principle for propagation of light. Our purpose is to investigate this phenomenon by methods of optimization. We use a particular reference frame (x, y) in which the local resistivity of fluid flow changes along the axis x (Fig.1), the axis y is tangent to a surface of constant specific resistivity  and u = dy/dx is the local direction of the gradient of the hydraulic head. A family of frictional paths entering at various angles 1 is considered corresponding with various gradients of the hydraulic head; to determine each path as an extremal is the goal of the variational approach applied.  (The approach can also be extended to energy flow in layered composites [2].) The ray shape can be described as an optimal control problem for a minimum of total resistance [2]
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In the frictional Darcy’s flow the resistance  is the reciprocal of the conductivity related to the gradient of the hydraulic head (gradT in the case of energy flow, [2]). A is a variable area perpendicular to fluid flow and A0 is a constant transfer area projected on axis y. A path or flow or “ray” bends depending on the ratio of 2/1; the bending constant for a ray equals c. Equation (4) below defines c in terms of a function R describing the minimum total resistance.
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Fig. 1. Illustration of a Fermat-like principle for nonlinear Darcy’s flows and the principle of notation.

The total resistance of an optimal path linking cross-sections 1 and 2 is described by the minimum resistance function R(x, y). Equation (1) should be optimized with respect to the control u = dy/dx within each differential layer dx. For the derivation of functional (1) the reader is referred to literature [1, 2].  Essential for its simplicity is the suitable frame (x, y) in which the local resistance of the fluid flow changes along the axis x whereas the diverse frictional paths may enter the investigated region at various angles 1, (and various controls u= tan= dy/dx), where each angle corresponds to a different gradient of the hydraulic head and hence to a different flux density of the flowing fluid.
3. HAMILTON-JACOBI THEORY

Within each differential layer, the minimum resistance function of the problem defined as
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(2)
satisfies the Hamilton-Jacobi-Bellman equation (HJB equation) 
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(3)
The considered model, eqs. (2) and (3), follows from the continuous algorithm of the dynamic programming method applied to the performance criterion (1). Extremizing the Hamiltonian expression in the above equation yields an optimality condition for the fluid flow within each layer; it is written below in the form of the tangent law of bending for a Darcy’s ray
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(4)
where c is a constant which may be both positive or negative. The constancy of the partial derivative ∂R/∂y follows from an explicit independence of density  in eq. (1) with respect to y. Expressing the optimal control u in the HJB equation (3) in terms of p = ∂R/dy yields the Hamilton-Jacobi equation for the frictional fluid flow in an arbitrary layer
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(5)
where the second term of the left hand side expression is the optimal Hamiltonian. The solution to this equation can always be broken down to quadratures. However, if the function of specific resistivity (x) is too complicated, the integrals cannot be evaluated analytically. Hence the role of the discrete approach which solves numerically the associated Bellman's recurrence equation of the problem. This still cannot be analytically solved for an arbitrary (x), thus a dynamic programming sequence of Rn must be generated numerically. Yet, in the limit of an infinite number of stages, an analysis shows that the potential function satisfying Eq. (2) takes the limiting form 
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(6)
This function satisfies both HJB equation (3) and Hamilton-Jacobi equation (5). 

4. FINAL REMARKS 

Our results show that a sort of refraction law governs the fluid conduction, the so-called tangent law of bending. It was first found in studies of boundary conditions for the heat flow through a discontinuity at which the thermal conductivity has a jump [1, 2]. The tangent law is different from Snell's law of refraction in optics, with the tangents of the angles of incidence and refraction replacing the sines and the conductivity reciprocal taking the place of the refractive index. Such law is known for the electric field intensity at the boundary between two dielectrics, and it also applies to potential fields in general. By considering the case when the flow resistance increases gradually with x (the medium becoming "denser" with x) one shows that the slope of the Darcy’s ray decreases with x, thus turning toward the direction of the specific resistance gradient. Indeed, by minimizing the total resistance, the ray spanned betwen two given points takes the shape that assures that its relatively large part resides in the 'rarer' region of the porous medium. In other words, the fluid path bends into the direction which ensures its shape corresponding with the longest residence time of the fluid in regions of lower resistivity. This makes one possible to predict shapes of Darcy’s rays or paths of the fluid flow. This also leads to description of the fluid flow in terms of wave-fronts and corresponding Hamilton-Jaconi theory. It can also be shown that a Darcy’s ray initially in the direction of the resistivity gradient propagates undeviated. However, since the tangent law holds, a ray perpendicular to the resistivity gradient (tangent to a layer of the constant resistivity) also propagates undeviated. This is consistent with the tangent law of bending but this is not in agreement with Snell's law where a ray always bends toward the gradient of the index of refraction. These results represent basic characteristics of steady nonlinear transfer of fluids in frictional porous media. Yet, any extension of their variational methodology to unsteady flows is very difficult and requires the use of entirely different methods [4].
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