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Abstract: Proposed is a novel iterative method for solving semidefinite programs. It
exploits the ideology of cutting hyperplane through the center of mass of a convex
body. To estimate the center of mass, we use a random walk technique known as
the Hit-and-Run algorithm. The results of numerical simulations are compared to
those obtained with presently available approaches. Robust versions of the method
are considered, where the coefficient matrices contain norm-bounded uncertainties.
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1. INTRODUCTION AND OVERALL
SCHEME OF THE METHOD

In this section we formulate the problem un-
der consideration and present a brief schematic
description of the main ideas underlying our
method.

Considered is the standard semidefinite program
(SDP) of the form

min cTx s.t. A(x)
.
= A0 +

n∑

i=1

xiAi ≤ 0, (1)

where c ∈ R
n and Ai ∈ R

m×m, i = 0, . . . , n, are
known symmetric matrices; the notation A ≤ 0
stands for negative semidefiniteness of the ma-
trix A. The constraint inequality in (1) is called
a linear matrix inequality (LMI), and the convex
set

Dfeas = {x ∈ R
n : A(x) ≤ 0}

is referred to as the feasible domain of this LMI.

This problem is known to be one of the key
problems in the theory of linear matrix inequali-
ties (Boyd et al., 1994). It has numerous applica-
tions in various fields of system theory and con-
trol, and at present there exist efficient solution

techniques based on interior-point methods; e.g.,
see (Nesterov and Nemirovskii, 1994).

Inspired by the recent results in the rapidly de-
veloping area of randomized methods in control
system analysis and design (Tempo et al., 2005),
we propose a novel approach to solving prob-
lem (1), which is based on totally different ideas.
The iterative method that we developed leans on
random walks, estimation of the center of mass of
a convex set—the feasible domain Dfeas, and uses
the new notion of boundary oracle for LMIs.

The cornerstone components of our approach are

(a) the cutting hyperplane ideology, which is used
to compute iteratively a sequence of embedded
subdomains Dk+1 ⊂ Dk ⊂ Dfeas and mono-
tonically decrease the value of the objective
function f(x) = cTx;

(b) the so-called Hit-and-Run (HR) algorithm for
estimating the center of mass of Dk required in
item (a) above;

(c) a boundary oracle which is needed for imple-
mentation of the HR-algorithm.

Specifically, let Dk ⊂ Dfeas be the domain ob-
tained at the kth step of the iterative method



under consideration. For simplicity, it is assumed
that Dfeas is bounded in order to guarantee
the boundedness of Dk. Using HR-algorithm, we
generate Nhr random points distributed approx-
imately uniformly on Dk and adopt their aver-
age xk as an estimate of the center of mass of Dk.
The point xk might as well be taken to compute
the current estimate fk = cTxk of the objective
function. Next, the hyperplane

Hk = {x ∈ R
n : cT(x− xk) = 0}

is drawn to cut off the “idle” portion of Dk thus
reducing it to

Dk+1 = {x ∈ R
n : x ∈ Dk, cTx ≤ cTxk} ⊂ Dk,

and the process is repeated with the set Dk+1.
In other words, the convex set Dk+1 is bounded
by the LMI constraints in (1) and the half-space
{x ∈ R

n : cT(x − xk) ≤ 0} defined by the
hyperplane Hk. Schematically, the behavior of
the method is represented in Fig. 1 for the two-
dimensional case where the vector c is taken in
the form c = (0, 1)T.
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Fig. 1. Schematic representation of the method.

Under the assumption that xk is a reasonably
accurate estimate of the true center of mass,
the lemma in (Radon, 1916) on the measures of
symmetry of convex bodies is used to obtain an
estimate on the guaranteed rate of decrease in the
objective function. Thus, the method is expected
to have a geometric convergence rate. Note that
by no means do we intend to estimate the optimal
point x∗ = arg min

x∈Dfeas

cTx, but rather evaluate

the optimal value f∗ of the objective function.

2. CORNERSTONES

We now present the techniques and results under-
lying each of the items (a)–(c) above.

2.1 Cutting hyperplane

The implementation of item (a) and the guar-
anteed reduction of the value of the objective
function is based on the following lemma.

Lemma 1 (Radon, 1916). Let D ⊂ R
n be a convex

bounded body and g ∈ D be its center of mass.

Denote by H an arbitrary (n−1)-dimensional hy-
perplane through g, and let H1 and H2 be the two

hyperplanes supporting to D and parallel to H.

Denote by

r(H)
.
=

min{dist(H,H1), dist(H,H2)}

max{dist(H,H1), dist(H,H2)}

the ratio of the distances from H to H1 and H2,

respectively. Then

min
H

r(H) ≥
1

n
.

As applied to the setup in this paper, let H1 and
H denote the two hyperplanes through the two
successive iterations xk and xk+1 of the method,
and let H2 be the supporting hyperplane through
the optimal point x∗. Assuming that the exact

value of the center of mass is known, the following
estimate is readily available:

fk+1 − f∗ ≤ κ(fk − f∗), κ =
n

n+ 1
,

where f∗ is the optimal value of the objective
function and fk = cTxk is the estimate obtained
at the kth iteration.

Notably, to the best of our knowledge, this result
has never been used in optimization, in contrast
to similar results on the guaranteed volumetric re-
duction, which are typical to various modifications
of the ellipsoid method.

2.2 Hit-and-Run algorithm

We now describe the Hit-and-Run algorithm, an
efficient randomized technique exploited in this
paper in the estimation of the center of mass of the
sets Dk. This random walk algorithm originally
proposed in (Smith, 1984) is simple to describe.
It applies to a bounded convex body D ∈ R

n and
returns a random point z having approximately
uniform distribution on D. The arithmetic mean
of this distribution is then adopted as an estimate
of the center of mass.

Specifically, an initial point z0 in the interior of D
is selected, and let zj be the point obtained at the
jth step of the algorithm. A random direction y
is generated (say, in the form ξ/‖ξ‖, where ξ is a
Gaussian random vector with zero mean and iden-
tity covariance matrix, and ‖ · ‖ is the euclidean
vector norm). The 1D-line zj + λy is considered



and the points zj and zi of its intersection with
the boundary of D are computed. The next-step
point zj+1 is then generated randomly uniformly
on the chord [zj , zj ].

In (Smith, 1984; Lovász, 1999) it has been shown
that the sequence of random vectors {zi}Nhr

1 gen-
erated in such a way forms a discrete Markov
chain having the property of uniform ergodicity.
In other words, the distribution of the random
vector zi tends to the limiting uniform distri-
bution on D with geometric rate; this property
is referred to as fast mixing . The mixing rate
depends on the shape of the set D and on the
“position” of the initial point. The best results
are obtained if the distribution of z0 is close to
the uniform (the so-called warm start of the HR-
algorithm), and the set D is isotropic, i.e., it has
“equal dimensions” along all directions.

There exist other random walk techniques; the
HR-algorithm is chosen here because it is simple
to implement, produces practically reasonable ap-
proximations to the uniform distribution, requires
minimum a priori information about the set D,
and can also be applied to nonconvex sets under
mild extra assumptions.

It should be noted that the HR-algorithm has
been first applied to solving convex optimization
problems in (Bertsimas and Vempala, 2004), how-
ever the overall method in that paper essentially
differs from the one proposed here.

2.3 Boundary oracle

To perform the HR-algorithm over Dk, we need to
efficiently compute the intersections of a 1D-line
and the boundary of Dk, which is accomplished
via use of the semidefinite boundary oracle devel-
oped in (Polyak and Shcherbakov, 2006). The core
of this oracle is the lemma below.

Lemma 2 (Polyak and Shcherbakov, 2006). Let
A < 0 and B = BT, then the minimal and the

maximal values of the parameter λ ∈ R retaining

the negative definiteness of the matrix A+λB are

given by

λ =







max
λi<0

λi,

−∞, if all λi > 0;

(2)

and

λ =







min
λi>0

λi,

+∞, if all λi < 0,

(3)

where λi are the generalized eigenvalues of the pair
of matrices A and −B, i.e., Aei = −λiBei.

With this lemma, the desired endpoints of the
chord [zj , zj ] are computed as zj = zj + λy and
zj = zj + λy.

In the setup of this paper, assume that zj ∈ Dfeas

and y ∈ R
n is a (random) direction. We have

A(zj + λy) = A(zj) + λ

n∑

i=1

yiAi
.
= A+ λB,

and using Lemma 2, the desired intersection
points of the line and the boundary of Dfeas are
given by zj = zj + λy and zj = zj + λy.

To compute the points of intersection with the
boundary of the set Dk, the additional linear
condition cT(x − xk−1) ≤ 0 defining Dk is to be
taken into account, which is straightforward to
implement.

As seen from the aforesaid, this operation should
be frequently performed in the process of itera-
tions. The basis of this operation is finding the
eigenvalues of matrices, which is efficiently imple-
mented in Matlab as the eig routine; hence, the
boundary oracle for LMIs is accurate and “cheap”
enough for matrices of quite large dimensions,
which is confirmed by numerical simulations.

Generalizations. Together with the HR-algorithm,
the semidefinite boundary oracle can be exploited
in a wide range of problems. We briefly describe
some of its applications to the problems where
the sets Dfeas are defined by other types of ma-
trix constraints encountered in optimization and
control.

Often, the LMI constraints in problem (1) are
formulated in terms of a matrix (rather than
vector) variable; e.g. in the form of the matrix
Lyapunov inequality

C +ATX +XA ≤ 0, X > 0, (4)

where C = CT and A are given, X = XT > 0
is a matrix variable, and the goal is to minimize
the function trX subject to (4). Such a setup
is typical to quadratic stabilization of dynamic
systems.

We formulate the boundary oracle for this prob-
lem; i.e. assuming that (4) holds for some X > 0
and letting Y = Y T be an m × m increment
(direction), we find the minimum and maximum
values of λ such that (4) is satisfied with X+λY .
We have

C +AT(X + λY ) + (X + λY )A =

=C +ATX +XA
︸ ︷︷ ︸

A0

+λ (ATY + Y A)
︸ ︷︷ ︸

A1

.
=A0 + λA1, (5)



where A0 ≤ 0 and A1 = AT

1 . Hence, the problem
reduces to the one considered in Lemma 2. The
only difference is that we have to account for
the constraint X + λY > 0, which is easy, since
it is of the same form. Finally, let Λ = [λ, λ]
be the segment of sign-definiteness in (5) and
Λ1 = [λ1, λ1] be that of sign-definiteness for
X + λY ; then λ ∈ Λ ∩ Λ1.

Another type of constraints often encountered in
control is quadratic in X; for example, they might
have the form of the matrix Riccati inequality:

C +ATX +XA+XBBTX ≤ 0, X > 0.

Let it hold for an X > 0, and let Y = Y T be an
m × m increment; consider the matrix X + λY .
Denoting M(X) the matrix on the right-hand side
of the quadratic inequality above, similarly to (5)
we obtain

M(X + λY ) = G+ λH + λ2FFT,

where

G=M(X) ≤ 0,

H =XBBTY + Y BBTX = HT,

F = Y B.

Using Schur lemma, the matrix inequality G +
λH+λ2FFT ≤ 0, which is quadratic in λ, reduces
to the linear one





G+ λH λF

λFT −I



 ≤ 0,

i.e.,
(
G 0
0 −I

)

+ λ

(
H F

FT 0

)

.
= A0 + λA1 ≤ 0,

so that (at the expense of increasing dimension by
a factor of two) we are within the old setup.

3. NUMERICAL EXPERIMENTS

Various modifications of the method leading to
essential acceleration of the basic scheme were
used in the numerical experiments. Most attention
has been paid to the practical implementation of
the HR-algorithm. In particular, since Dk+1 ⊂
Dk, economy sampling schemes can be applied
which use those of the HR-points generated at
the previous iteration, which fall in the Dk+1

(so-called reuse techniques; e.g., see (Chen et al.,
2004)). Other modifications include various types
of averaging the HR-points, different from simple
arithmetic mean; use of by-product boundary
points; selecting the initial point, etc. These lead
to a more accurate evaluation of the center of mass
and speed up the realization of the HR-algorithm
at every step of the method.

One of the most crucial issues associated with
the implementation of the HR-algorithm is worth

mentioning in more detail. Typically, as the
method approaches the optimum, the sets Dk be-
come “skinny” in the direction c, and the isotropic
property vanishes. As a result, the HR-algorithm
exhibits bad mixing and tends to stick inside
certain subdomains of Dk, because most of the
randomly generated vectors ξ (see Section 2.2)
tend to be directed “across” the Dk, not “along”
the set. To avoid such effects, it is suggested to
dilate the set Dk in order to make it isotropic.
Such a dilation can be performed using certain lin-
ear transformation; e.g., see (Bertsimas and Vem-
pala, 2004)). Specifically, having generated Nhr

HR-points zi in the set Dk−1, we compose the
following sampled covariance matrix :

W =
1

Nhr−1

Nhr∑

i=1

(
zi−ẑ

)(
zi−ẑ

)T
, ẑ =

1

Nhr

Nhr∑

i=1

zi.

This matrix reconstructs the shape of Dk−1 from
the available information, and the direction vector
for the HR-algorithm at the next step is taken in
the form η = W 1/2ξ, where ξ ∈ R

n is uniformly
distributed on the surface of the unit hypersphere.
In other words, since the shape of Dk is “similar”
to that of Dk−1, the directions η are generated
uniformly on the ellipsoid which approximates the
skinny shape of Dk; this leads to a much better
mixing and a more accurate evaluation of the
center of mass even for highly shrunk domains. As
a result, the method attains considerably higher
accuracy.

In the experiments, the method demonstrated
very stable performance over a number of ran-
domly generated test problems with the dimen-
sions of the Ai matrices as large as m = 100,
and the dimensions of the design vector x as
high as n = 300. As far as the widely used
computer Matlab-based realizations of interior-
point methods (the solvesdp routine in Se-

DuMi Toolbox) are concerned, our method has
showed comparable performance, sometimes ex-
ceeding the classical methods in accuracy.

To illustrate, we briefly describe some results of
simulations.

The first set of experiments was conducted with
SDP problems having dimensions n = 300, m =
10. Typically, the method produces 7 to 8 exact
decimal digits for the function value after 15 it-
erations (averaging in the HR-algorithm was per-
formed over Nhr = 2, 000 points). The solvesdp

routine typically exhibits slightly lower accuracy
(6 to 7 digits), and sometimes it yields an infeasi-
ble point x∗, i.e. λmax

(
A(x∗)

)
≈ 10−7 > 0.

In the second set of experiments, we took n = 10
and m = 100 as the matrix dimension. Using only
Nhr = 200 HR-points usually leads to 9 exact
digits after 15 to 20 steps, and the estimated



convergence rate κ (see Section 2.1) is greatly
exceeded.

Finally, we mention the “worst-case” geometry
SDP problems, where the feasible domain has
simplicial form. In that case, the estimate given
by Lemma 1 is attained, which is confirmed by
the experiments.

4. ROBUST VERSIONS

Among very important extensions of the method
is its modification to the case where the matrices
Ai are uncertain, Ai = A0

i +∆i, and ∆i = ∆T

i are
bounded in the spectral norm. Namely, the robust
statement of problem (1) that we consider is to
minimize cTx over the robustly feasible domain

Drob
feas =

{
x ∈ R

n : A(x,∆) ≤ 0 ∀ admissible ∆
}
,

where

A(x,∆)
.
= A0

0 +∆0 +

n∑

i=1

xi(A
0
i +∆i),

and by admissibility of uncertainty ∆ we mean

‖∆i‖ ≤ εi, i = 1, . . . n,

for some specified εi ≥ 0.

In the literature, there are only limited results on
robust statements of the SDP problem, e.g., see
(El-Ghaoui et al., 1998; Ben-Tal and Nemirovski,
2002).

For such a setup, we developed the robust semidef-
inite oracle which makes efficient the robust ver-
sion of the method proposed. This robust or-
acle is based on the lemma below on the ra-
dius of nonsingularity for symmetric matrices,
cf. (Polyak, 2003).

Lemma 3 (Polyak and Shcherbakov, 2006). For
a nonsingular symmetric matrix M ∈ S

m×m, its

symmetric radius of nonsingularity defined as

ρ(M)
.
= inf{‖P‖ : P∈ S

m×m, M+P is nonsingular}

is given by

ρ(M) = 1/‖M−1‖ = min
i
|λi(M)|.

Using this result, an efficient procedure described
below can be devised for computing the inter-
section points of a 1D-line with the boundary of
Drob
feas, and the HR-algorithm can be performed

over Drob
feas.

Namely, let x ∈ Drob
feas be a robustly feasible

point and y ∈ R
n be a direction. We consider the

line x+ λy and find the quantities λrob, λ
rob

, the
minimal and maximal values of λ retaining the

negative definiteness of the matrix A(x + λy,∆)
for all admissible ∆. We have

A(x+ λy,∆) = Â(λ) + ∆(λ),

where

Â(λ) =A0 +

n∑

i=1

(xi + λyi)Ai,

∆(λ) =∆0 +

n∑

i=1

(xi + λyi)∆i,

and according to Lemma 3, the matrix Â(λ) +
∆(λ) remains nonsingular (hence, negative defi-
nite) for all admissible perturbations ∆ satisfying

∥
∥
(
Â(λ)

)−1∥
∥ <

1

‖∆(λ)‖
.

Since the perturbations independently sweep their
respective domains of uncertainty, the estimate

‖∆(λ)‖ ≤ ‖∆0‖+
n∑

i=1

|xi + λyi| ‖∆i‖

= ε0 +

n∑

i=1

|xi + λyi| εi

is sharp. Therefore, by considering the two scalar
functions

ϕ(λ) =
∥
∥
∥

(

A0 +

n∑

i=1

(xi + λyi)Ai

)−1∥
∥
∥;

ε(λ) =
1

ε0 +
n∑

i=1

|xi + λyi| εi

,

(6)

the segment [λrob, λ
rob

] of robust negative
semidefiniteness of the family A(x + λy,∆) can
be computed numerically as {λ : ϕ(λ) ≤ ε(λ)}.

Clearly, the inclusion [λrob, λ
rob

] ⊂ [λ, λ] is valid,
where λ, λ are the critical values of the parameter
λ in the perturbation-free case (i.e., the minimal
and maximal values of λ retaining the negative
definiteness of A(x+ λy, 0)). Hence, checking the
condition ϕ(λ) ≤ ε(λ) should only be performed
over the segment [λ, λ], and we arrive at the
following robust boundary oracle.

Lemma 4. Let A(x, 0) < 0. For any y ∈ R
n, the

maximal and minimal values of λ retaining the

negative definiteness of the matrix A(x + λy,∆)
for all admissible perturbations ∆ are given by the

two solutions of the equation ϕ(λ) = ε(λ) (6) on
the interval [λ, λ] (2)–(3).

It is this boundary oracle that constitutes compo-
nent (c) of the method; the rest of the components
remain the same as in the non-robust setting.



Experiments. Experiments conducted with the ro-
bust version of the method showed reasonable
accuracy and rate of convergence for randomly
generated coefficient matrices Ai. For example, in
a typical low-dimensional problem with n = 2,
m = 3, the method yields 5 to 6 exact decimal
digits after 10 iterations.

The main numerical difference from the non-
robust problem is that the nonlinear equation (6)
has to be solved at every step of the HR-algorithm
(the standard Matlab routine fsolve was used).
As a result, every step of the method requires 5
to 20 times as much cpu time as compared to the
non-robust version (depending on the dimensions
of the SDP problem).

5. CONCLUSION

The randomized optimization approach presented
here is based on novel yet transparent ideas. Im-
portantly, it admits generalizations to other con-
vex optimization problems such as those speci-
fied by linear and quadratic algebraic inequalities,
quadratic matrix inequalities, conic programming,
etc.

Although we do not provide a rigorous theoretical
justification of the method, preliminary numeri-
cal tests have shown its quite competitive perfor-
mance in the original setup (1) and a reasonable
behavior in the robust formulation. It is felt that
a promising direction for future research would
be development of alternative randomization rou-
tines different from HR, which might lead to prov-
able versions of the method.
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