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Abstract parameter perturbation does not affect the topologi-
This article describes a novel bifurcation phenomenon occur- cal structure and geometrical properties of the attrac-
ring in the 2D parameter space of piecewise-linear maps. In tor. Typically, the chaotic nature of the attractor is pre-
the region of chaotic behavior we detect an infinite number served as well.

of interior crises bounding the regions of multi-band attrac- One situation where the difference between both def-
tors. This phenomenon, denoted as bandcount adding sceinitions becomes considerably is given by specific
nario, leads to a self-similar structure of the chaotic region in chaos-chaos transitions, in particular interior and merg-
the parameter space. ing crises. These bifurcations are well-known since
the fundamental publications (Grebogi al., 1982;
Grebogi et al, 1983) and investigated in several

multi-band chaotic attractors, bandcount adding, bandcount works theoretically and experimentally (see for in-

doubling, interior crises, piecewise-linear maps, discontinu- Stance (Greboget al, 1986; Dittoet al, 1989)). Both
ous maps in smooth and in piecewise-smooth systems interior

and merging crises are caused by collisions of a chaotic

. attractor with an unstable periodic orbit located within
1 Introduction its basin of attraction. The attractor at the bifurcation
One of the phenomena often observed when dealingpoint is robust in the sense of (Banerjeal, 1998),
with piecewise-smooth systems is the so-called robustsjnce there are no periodic windows in its vicinity.
chaos. In the pioneer work by Banerjee, Yorke and However, it is not robust in the sense of (Milnor, 1985),
Grebogi (Banerjeet al, 1998) this term is defined by  gjnce jts geometrical shape and often also the topology
the absence of periodic windows. This means, that an (especially the number of bands or strongly connected
infinitesimally small parameter perturbation does not components) changes at the bifurcation point.
affect the chaotic nature of the attractor. It was ini- |, conirast to individual crisis bifurcations complete bi-
tially assumed, that chaos without periodic windows g, cation scenarios formed by several types of crises
is not possible for maps with a smooth system func- 5o |l insufficiently investigated. Especially when
tion (Barretoet al, 1997; Banerjeet al, 1998). HOW-  yeajing with piecewise-smooth systems, it is well-
ever, some years later it was shown, that it iS oS- ,qn that in the region of robust chaos one-band at-
sible to design smooth maps demonstrating this phe-y 5qtor5 are often interrupted by small windows con-
nomenon (Andrecut and Ali, 20@1 Andrecut and  aining multi-band attractors. The boundaries of the

Ali, 2001b). o regions of multi-band attractors are formed by crises
However, the absence of periodic windows does not ex- bifurcations. Therefore, in this work we will demon-

clude possible non-smooth changes of the topological
structure and geometrical properties of the chaotic at-
tractors caused by infinitesimally small parameter per-
turbations. Therefore it is less restrictive than a gen-
eral definition for robustness of attractors. Following
the famous work by Milnor “On the concept of at-
tractor” (Milnor, 1985), an attractarl existing at the
pointp in parameter space is called robust (structurally
stable), iff for all attractorsd’ existing at the points
p’ € U.(p) in the infinitesimally small neighborhood
U.(p) there exists a smooth mapping betweérand . { felx) =azx, +p+1 if 2, <0
n+1l —

Key words

strate how the region of robust chaos is structured and
report some novel bifurcation scenarios representing
well-organized infinite sequences of crisis bifurcations

causing observed self-similarity of these structures.

2 Bandcount adding
Let us consider the following map

1)

A’. This definition means, that an infinitesimally small fr(@) =azp +p—1 if 2,>0
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Figure 1. Period adding at = 0.99 (a,b) vs. bandcount adding at PkL(R£2)2_ ~—Cre2 -
a = 1.01 (c,d). Although the bifurcation diagrams (a, c) look very X
similar, all attractors in (a) are periodic, whereas all attractors in (c)
are chaotic. Hereby both the periods of the periodic attractors (b) and
the bandcounts of the chaotic attractors (d) show the characteristic P s
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with @ > 0, || < 1, representing a common model
of aX /A modulator investigated for instance in (Feely
and Chua, 1991; Feely, 1992; Jacomigdl, 2004) and for orbits up to the third generation of the infinite symbolic sequence
occurring also in biology (Coutinhet al, 2006) as a adding scheme, as well as regions of chad®ig and divergentPy;y
specific model of genetic regulatory networks. Since
the stability of orbits in this system is determined by
the slopea only, this system shows fatr < 1 peri- ] . )
odic (and in limiting cases aperiodic non-chaotic) dy- Itis ShOWU in (Avrutinet al,, 2007), thf?lt the structure
namics. Fora > 1 the dynamics is chaotic in the ©Of the regionIl = {(a,x) | a < 1} is completely
region P, bounded by the curves of boundary crises determined by two codimension 2 big bang bifurca-
Y/ = {(a,p) | p = £(a — 2)/a} and outside of this  tions (AVfutm and Schanz, 2(_)06) of the period adding
region divergent (see Fif] 2). Since no stable periodictygev which occur at the point8' = (0,—1) and

orbits fora > 1 are possible, the chaotic behavior in B~ = (0,1). Fromeach of these points an infinite num-
the regionPen is robust. ber of regionsP; originate (see Fid.]|2), whereby the

sequencer may beLR™ or RL™ withn = 1,2,....
These sequences are denoted in the following as ba-
sic sequences, and the corresponding oM~ and
Ox .~ as basic orbits. Due to the symmetry property
((a,pn) — (a,—p)) = (zr — —x), it is sufficient to

Figure 2. Analytically determined regions of periodic dynamics

behavior.

In order to detect, which crisis bifurcations occur
within P¢,, we have firstly to determine, which unsta-
ble periodic orbits exist in this region. Although this
question is in general difficult to solve, the first step
hereby is to consider the orbits, which are stable within X . . : )
the periodic domain and become unstable at its bound_conader. only one famﬂzl/i)f basic orbits, for |£1/s;tance
ary. In the following a periodic orbit is characterized Ocrr, since(a,u) € Pirn = (a,—p) € Prpn.

by the sequence consisting of symbol€ (for a point Note that we use here and in the following a compact
z < 0) andR (for = > 0) and representing exactly one notation: for instancé?[i/“ refers to the two different
period. The orbit corresponding to such a sequence Objects, namely?; andPy. The boundaries of the ex-
will be denoted ag),. The region in the parameter istence regions of a basic orbit (the curves of border
space, wher€, is stable (unstable), is denoteda% collision bifurcationi%{,f” andg;gﬁ/,f)’r respectively)
(respectivelyPY). These regions are bounded by the can be calculated analytically for arbitrasy It can be
curves of border collision bifurcation, where the corre- shown, that for each the regiorP} .. originates from
sponding orbitD,, will be destroyed as it collides with  the big bang bifurcation poir? and collapses to a sin-

the borderr = 0. These curves are denoted ¢, gular point(sz» = (1,(n—1)/(n+1)) € Jll located
whereby the index € [0, |o|] refers to the fact, that the  at the boundary of the regidi (line « = 1) where the
1th point of the orbit collides with the bordar = 0. orbit O,.»» becomes unstable. Far> 1 all these un-
The symbold € {¢,r} represents the direction of the stable orbits still exist, and the same border collision bi-
collision, i.e. whether théth point of the orbitO, col- furcations curves%gf”” are confining now the regions

lides with the border from the left side or from the right P}... Remarkably the region®} . andPs .. do
side. not completely cover the regidi. Namely, between
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Figure 3.  Analytically calculated regionQZ*{fn and Q%fn ( Figure 4. Numerically detected regio@’aC of multi-band attrac-
n < 10) of multi-band attractors caused by the basic orbits. For the tors. Marked are some of the regions corresponding to the first, sec-
unstable two-periodic orbitD}, the existence boundaries (border  ond and third generations of the bandcount adding scenario. Note the
collision curvessz%/o’e) are shown, as well as the curves of interior  correspondence between the period adding scenario far 1 and

crises 7775/75 caused by this orbit. the bandcount adding scenario for> 1.

each two subsequent regioR$ .. andP% .., there IS unstable and leads to two interior crisgs and

is some “free space”, where an infinite number of re- 7,- These curves can be calculated analytically us-
gions P: are located, whereby the specific sequencesing the condition that the points of the kneading orbits
o can be obtained from a pair of basic sequences./"(f¢(0)) and f*I(f.(0)) collides for somek with
LR" and LR"*! using the infinite sequence adding the involved unstable periodic orbit. In other words,
scheme (Avrutiret al, 2006). This sequence adding at the crisis bifurcation the discontinuity point= 0
scheme is a symbolic representation of the well-known belongs to the stable manifold of the involved unsta-
Farey tree (Lagarias and Tresser, 1995; Bai-Lin, 1989) ble periodic orbit. The resulting structure of the re-
also known as Stern-Brocot tree and implies that be- gion P is shown in FigDS, where the regiogy !
tween the region®; .. andP; .., there exists the  bounded by the curves,’* are marked for = LR"
region P .. ,pnt1- Furthermore between regions ando = RL". The following properties of the crisis
Pirn @NAP2 o, prnis the 1€GIONPY ez penis @M curvesyy/” are important:

between region®;} .. r .1 @ANAPJ ... the region _ _ _
pzm(ﬁmﬂ)? exists and so on. Hereby the basic 1. The multi-band atteractors undergoing crises at the
sequences occur always in the first layer of the se- bifurcation curves),’” where an orbit with period

quence adding scheme, the sequentRs LR™ ! in
its second layer, the sequencg&R")2LR"*! and
LR™(LR™1)% in the third layer and so on. Accord-

|o| is involved in haveo| 4+ 1 bands. That means,
before the crisis the attractor hgg gaps and in
each gap one point of the unstable periodic orbit is

ing to this we denote the layer of the sequence adding located.

scheme, where a specific sequencis generated, as 2. Obviously, each regio@!;"+1 bounded by the
the generation of this sequence and of the correspond-  curvesy?" is embedded into the regidp, where
ing orbit O,. For instance, in Fid.]2 the analytically the unstable orbit responsible for the crisis exists.
calculated region®; are shown for the orbité), of 3. Thenf/’“ curves originate from the poirt,, from
the generations one, two and three. Remarkably, the  \yhich the regionP? originates as well. At this
existence regions of qll orb;t@g ha\u/e similar struc- point the boundaries of the rem@o\ﬂ are tan-
Lu()r&t CForeegﬁhr the regionsP? andPY collapse to the gent with the boundaries of the regi@ty.

In the regionP., each of the orbitg),, described above  Especially the properties (2) and (3) imply that in



the parameter space the regio@é’ +1 are arranged  wo ﬁ V2

in the same order as the regiof’ and also as el e |

the regionsP; for a < 1. For instance, for each “ |/ [*% "~ 1~

n between the region®7r% and Q7% ., there e =t — /\

exists the regionQ2*t. . ... Similarly, between R

the regionsQ}%% and Q7+ .., there is the re- N : .
gion Q%% . paei, Whereas between the regions o a0, ¢ Ty B e e
Qe and Q770 the regionQ:Z;;ﬁ(LRnHP 2000 2 P

can be found. Examples for these regions are presentec S Y B

in Fig.[4. This figure shows the numerically calculated * P RS

regions of periodic dynamics (far < 1) and the re- .. N

gions of multi-band attractors (far > 1). As one can b o

see, both structures are organized by the same prin- \\\\\\f?\ l‘: ";,,/” -~ ,

ciples. This is the reason, why we denote the Struc- .. B . .
ture formed by multi-band attractors in the regidras (€) Qfars and Q3 @

bandcount addingsimilar to the period adding struc-
ture existing fora .< L . For the unstable orbi;, , , the existence boundaries (border col-
However, numerical experiments demonstrate that the ision curves ¢17/0/
correspondence between both structures mentioned P L2R2
above is not one-to-one. In fact within each region crises 7722732' caused by this orbit. (c) Similar results for the orbits
- 15 . I .
07" involved into the bandcount adding scenario Crar2 ar_]d Qﬁ?mwm' (.b) B'T urcatlon.d'agram along the line
fine substructures can be detected, consisting of regions“ = 0 (middle line of all regions involved into the bandcount dou-
with higher bandcounts. The existénce of these regionsinng scenario withinQ?. ). (d) corresponding bandcount diagram.
can not be explained based on the periodic orbits of the
period adding structure far < 1. Instead we have to h bi | diin diff fth
consider the orbits which are nowhere stable (denoted ~ these orbits are located in diiterent gaps of the at-
in the following as pure unstable orbits) tractor. That means for instance, that the attractors

. . Kn .
Let us consider as an example the family of regions ~ Within the regionQ havel6 gaps occupied by

Figure 5. (a) Analytically calculated area@%R and QZQRQ.

) are shown, as well as the curves of interior

QZ:IF?,Q"’ which belong to the first generation of the band- the points of the OrbiOfflk, 8 further gaps occu-
count adding scenario. Along the middle line of each ] g . Kl
region Qz;ﬁ we observe a sequence of regic@gg pied by the orbltOU;, 4 gaps occupied b@%f
with bandcounts L and2 gaps occupied b@ff. Consequently, the

) attractors have6 + 8 + 4 + 2 = 30 gaps and thus

- , K} = 31 bands.
Kp=1+mn+1)-) 2*=1+@2"-1)(n+1) 4

k=0 Since a sequence of interior crises forming the regions
. ] . ) Qf;;' is caused by the orbits with doubled periods we
The boundaries of these regions are defined by inte-genote it as @andcount doublingascade (although
rior crises caused by unstable periodic orbits with dou- the pandcounts within the cascade are not exact dou-
bled periods. For instance, the sequence of regionspeq, like it is the case for the periods within a period-

with bandcounts, 315, 31 ..., (see Fig[[p) located  goubling cascade). Note that bandcount doubling cas-
within the regionQ; are caused by the pure unsta- cades can be observed in such well-known systems as
ble periodic orbit@f{ with o} = LR, 03 = L*R?, the logistic map (where it follows each period doubling

o} = LP2RLR2LR, éi — L2RLR2LERELRLZR2, cascade) and the tent map.

and so on. The following properties of these regions ©f pourse:L,Jrghe same properties hold not only for the
are important; regions Q.5 from the first generation of the overall

bandcount adding scenario, but for the regions involved
1. The existence areas of all involved pure unstable in all further generations as well.
periodic orbitsOff originate from the same point  Nextlet us consider the interior structure of the regions
L"‘“ involved into the bandcount adding scenario be-
neath their middle curves. For simplicity we will pro-
on ceed with the already mentioned example, namely with
each other, that means the regl@gfb: is located the regionQ?. ., keeping in the mind that the results we

within the regionQ’fE] discuss are valid for all region@!?'**. As shown in

3. The multi-band chaotic attractors within the region Fig.[6.(a), varying the parameters along an arc around

- . I . 3
o are influenced by all pure unstable periodic the point(,r within the regionQ;., we observe a
i large number of intervals with bandcounts greater than

. Ky . . .
orbits O_7 with j = 1.4, whereby all points of  three. The scan curve in the parameter space we con-
J

(o1 atthe linea =1.
2. The regionsQ®: for increasingi are nested in



sider here is given by the elliptic atc= 1 + R, sin ¢, :
pu = R, cosp around the poin{ .z with R, = 0.05 ks
andR,, = 0.005. For o between approximately-80 o
and 80 degrees this arc is located within the region B R -
Q3%., whereby the used valug2 < 1+ R, < v/2im- L * o]
plies, that the scan curve we use intersects the regions
QZ% = Q7.5- and Q};i but does not interse@i’?1 ““ ©oeE
and any further regions forming the bandcount dou- i

bling cascade described above. Consequently, in therigure 6. Numerically determined bifurcation scenario within the
middle part of Fig[  we observe the bandcountnd region Q2. Shown are bandcounts (a) and bifurcation diagram
15 but do not observe the bandcousts 63, and so (b) along the elliptic arc around the poirdz= marked in Fig[J.
on. In Fig[§.(b) the corresponding bifurcation diagram Labeled are some of the bandcounts described in the text.

is presented, whereby for the sake of clarity we show
as blowups only that parts of the state space where the
points of the attractors are located, and the large gaps
in between are skipped. I
Straight forward calculation shows that within the re- .

gion Q% above the regiorQ7. . there exists a se-  2c*=*(cr)* |

0.02

. . 11 |
quence of regan%’;sz(ﬁR)n, and below the region iéwmmz
Q72> @ sequence of region@7.%% . -\, with the crier | L

following properties:

1. Each of these regions originates from the point
CLRr- oo, |

2. The bandcounts in these regions are explained byQﬁ‘”“ |
by 2n + 4 gaps where the points of the responsi- Qg‘"””)z |
ble unstable orbiOzz .2z )~ are located in, and RALARL)?
two further gaps containing the points of the orbit
OLR' -0.02 L

3. Like the regionsQ7+% and Q12 also the re- 1 a 118
ionsQ?nt? andQ2t7 represent the
? L2R2(LR)™ R2L2(RL)™ P ) Figure 7. Analytically calculated region®
irst generation of the bandcount adding scheme. | j,cateq within the regionQ3 ,
Therefore, between each two consequent regions
QFsTs(emyn ANAQZSES 1pynsa there is aregion
of attractors within + 13 bands, whereby the peri-
odic orbit causing the interior crises of these attrac- here | or0 217 The interi
tors iSO 2g2(£r)nc2R2(£R)"+1- These regions IC,Z |T‘ +,1)t erﬁ' IS a regloer . The |rr]1ter|0r |
belong to the second generation of the bandcount ¢TiSes leading tot |'sk:eg|o.ns are caused by th'e urr:stab e
addlng scenario within the regio@%R, and so perIOdIC OrbltSOp wit per|0d|p| = 2|O’| Within the

. . K+2|o :
on. All these regions originate also from the point region Q& and beneath the regio@), **!"! there is
(ere a family of regionsQ,., , as well as regions

K+(n+2)|o|
. . K+|w=| ;
As one can see, in each from the infinite number of @= . Whereby the sequence can be obtained

the regions involved into the bandcount adding sce- from a paira™p, o™ lp with n > 0 using the infinite
nario caused by unstable basic orbits a further band-Symbolic sequence adding scheme.
count adding scenario caused by pure unstable orbits
is nested. This nested bandcount adding scenario in-Remarkably, the reported scenario lead us to an un-
volves a further infinite number of regions. The most expected conclusion related to the boundary between
striking fact is, that this nesting process continues ad the regiondl of periodic andPc, of chaotic behavior.
infinitum, leading to a self-similarity of the parameter As already mentioned, at this boundary the poifits
space. Especially, along the middle line of each region are located, whereby for each periodic orbif sta-
QK we observe the bandcount doubling cascade causedle Within the regioril the regionP; collapses to the
by the orbits with periods‘|s|. The bandcounts of the ~ singular point¢,. Now we state, that from each of
involved regions have the form these points an infinite number of regio®y origi-
nates, whereby the orbit®, are pure unstable and
i—1 undergo interior crisis bifurcations within the region
Ki=(K—|o])+]o|- Z 28 = K + |o|(2" - 2) 07+ Hence, at each of the poirgs an infinite num-
k=0 ber of border collision bifurcation curves meets, as well
as a further infinite number of interior crises curves.
In other words, in the middle of each regi@j (with According to the notation introduced in (Avrutin and

2n+7
L2R2(LRyn TOF 1 S

. The elliptic arc marks the scan
curve used in the Fiff] 6.



Schanz, 2006), we conclude that each of these pointsCoutinho, R., B. Fernandez, R. Lima and A. Meyroneine
represents a codimension 2 big bang bifurcation point. (2006). Discrete time piecewise affine models of genetic
regulatory networks]. Math. Biol.52, 524-570.

Ditto, W. L., S. Rauseo, R. Cawley, C. Grebogi, G.-H. Hsu,
3  Summary E. Kostelich, E. Ott, H. T. Savage, R. Segnan, M. L. Spano
In this paper we considered a piecewise-linear discon- and J. A. Yorke (1989). Experimental observation of crisis-
tinuous map and described the structure of the chaotic induced intermittency and its critical exponeRtys. Rev.
region in the 2D parameter space. It was shown, Lett.63(9), 923-926. _
that this region has a complex and presumably self- Putta, P., B. Routroy, S. Banerjee and S. Alam (2006). Bor-
similar structure caused by interior crises of one- and 9er collision bifurcations in n-dimensional piecewise linear
multi-band chaotic attractors. The overall 2D struc- discontinuous maps. arxiv:nlin/0601038v2.

is f db ific 1D bif . Feely, O. (1992). Nonlinear dynamics of sigma-delta modu-
ture is formed by two specilic lfurcation scenar- lation. In: Proc. Midwest Symp. Circuits Sygtp. 760-3.

ios, namely bandcount adding and bandcount doubling, reely, 0. and L. Chua (1991). The effect of integrator leak in

nested into each other. For both scenarios we demon- ;A modulation.IEEE Trans. Circuits Sys88(11), 1293—

strated, which unstable periodic orbits are responsible 1305.

for their formation. It is especially remarkable, that the Grebogi, C., E. Ottand J. A. Yorke (1982). Chaotic attractors

first level of the overall bifurcation structure is caused in crisis.Phys. Rev. Let#§(22), 1507-1510.

by periodic orbits, which originate from the region of Grebogi, C., E. Ott and J. A. Yorke (1983). Crisis: sudden

stable periodic dynamics. In contrast to this, all further ~changes in chaotic attractors and transient chlogsicaD

levels are induced by pure unstable periodic orbits, this 7,181. .

means periodic orbits which are unstable for any pa- ¢€00di: C.. E. Ott and J. A. Yorke (1986). Critical Expo-

rameter values. All these results can be summarized nent of Chaotic Transients in Nonlinear Dynamical Sys-
. . R tems.Phys. Rev. Let67(11), 1284-1287.

by a few ru!es, which describe the Self's'm_'lamy of the Jacomet, M., J. Goette, V. Zbinden and C. Narvaez (2004).

2D bifurcation structures and allow to predict the band- o, the dynamic behavior of a novel digital-only sigma-delta

counts of the involved multi-band chaotic attractors up  A/D converter. In: Proc. of the 17th symposium on Inte-

to arbitrary high values. These rules, developed using grated circuits and system desigdrazil. pp. 222 — 227.

the map considered in this work, are applicable for a Lagarias, J.C. and C. Tresser (1995). A walk along the

more general class of dynamical systems, showing the branches of the extended Farey tri&M Jour. of Res. and

phenomenon of robust chaos. Especially the discon- Dev.39, 283-94.

tinuous 2D normal form map investigated for instance Milnor, J. (1985). On the Concept of Attractdtommun.

in (Duttaet al, 2006) shows the phenomenon described Math. Phys99, 177-195.

in this work. Consequently it must also be the case for

all systems reducible to this normal form.

Finally, the results of this paper can be seen as a con-

firmation that the term of robust chaos, must be used

carefully, since chaotic attractors which are robust in

the sense of (Banerjet al, 1998) are not necessarily

robust in the sense of (Milnor, 1985).
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