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Abstract

It is shown that the control time is the adequate char-
acteristic of the state of chaos for the dynamical control
system of neutral type.

1 Introduction

For considered below classes of dynamical control sys-
tems, we use controls of two kinds, and namely, basic
controls and local controls. We assume the following for
the classes of dynamical control systems. First, the dy-
namical system, that corresponds to each basic control,
has the complex behavior with abundance of periodic and
everywhere dense trajectories. Second, any dynamical
control system is locally controlled along every basic tra-
jectories, i.e. along trajectories corresponding to basic
controls.

By first assumption, any dynamical control system is
globally e-controlled, and namely, for every pair of points
there exists a trajectory of the basic dynamical system
that goes through an e-neighborhood of these points. By
second assumption, there exists a controllable trajectory
goes through these points. In this case, any dynamical
control system is globally controlled provided it is locally
controlled.

In connection with above, the main problem is find es-
timates of control times for dynamical control systems of
the considered classes. In particular, this problem was
considered in [1, 2]. Also, this problem was solved in
[3, 4, 5, 6] where the upper and lower bounds of control
times were obtained for some classes of dynamical con-
trol systems. In particular, the bounds of control times
were obtained for hyperbolic dynamical control systems.
It was shown that the control time is the adequate char-
acteristic of the state of chaos for the dynamical control
system.

In this paper, an analogous problem is investigated for
neutral dynamical control systems. In [4], it was shown
that the control time 7" satisfies to the following estimates

[ T <

4 =
cd+1

C C
gv (1)

where d is dimension of the state space, ¢ is the radius of a
neighborhood of the target point, The values C, C' depend
on parameters of the state space and of the dynamical
control system.

Estimates (1) were obtained without regard to the state
of chaos of the dynamical control system. Below, we in-
vestigate the impact of the state of chaos on upper and
lower bounds of control times.

2 Description of dynamical con-
trol systems

Let X = {z}, dim X = d be a Riemannian manifold and
U = {u} C R! be a neighborhood of null control u° = 0.
By dist denote a metric on X, by Vol denote a measure
of volume on X, and by vol denote a normalized measure
of volume on X, i.e. for any measurable set A C X it is
fulfilled vol(4) = % Vol(A) where V' = Vol(X).

Consider a local family of maps f(.,u) : X — X,
u/inU, where the set X is the state space, the set U
is the control space.

A map f is called a neutral map iff dist(zy,z.«) =
dist(f(z«), f(24s) for any x., x. € X.

By fo(.) = f(.,u%) denote the basic map. We shall
assume that the map fy is some neutral map and that the
minimal fp-invariant set is the state space X. If fy is the
neutral map then the probabilistic fy-invariant measure
is vol.

We assume that f(.,u) = fo(.) + ufi(.). Consider the
dynamical control system in the form

Tnt+1 = fO(fEn) + ’U’fl(x’ﬂ)v (2)

where the map f; : X — X is such that dynamical con-
trol system (2) is local controllable. Denote

n=0,1,2,...,

U=U%=Ux---xU, ﬁ:(ul,...,ud)eﬁ,
F(a:,ﬁ):f(a:,ul)o---Of(a:,ud)

and consider the dynamical control system

(3)

Tpy1 = Flay, @), n=0,1,2,.... (4)

Form the sequence of the accessibility sets from a initial
point zo under local controls @ € U.
My = {0}, My = F(z0,0),..., My = F(M,,U),

n=01,2,.... (5



The sequence of relative volumes of the accessibility sets
from zq is as follows

vo = 0,v; = vol(My),...,vp = vol(My),.... (6)

3 Dynamical control systems on
torus with the basic maps gen-
erated by shifts

We consider some classes of dynamical control systems
on torus of dimension d. Torus T¢ is the factorization
]Rd/Zd. Let z be coordinates in R?. Further, we shall
assume that the map fy depends on parameter a which
corresponds to some class of dynamical control systems.
We shall assume also that the basic map is the shift, i.e.
fo(z,a) =z + a.

Let the dynamical control system be given by the equa-
tion
modl, n=0,1,2,..., (7)
i.e. we consider the fractional parts of the right part of
equation (2). The value of parameter a is the constant
(independent of time) d-dimensional vector. Further, we
assume that the vector a depends on some small param-
eter . We shall consider a few kinds of dependence on
g, i.e. a = a(e), where a(0) = 0. Let a(e) = ape® where
0<a<l1,a9>0.

Tnt+1 = Tptatufi (.’En),

3.1 The basic map generated by zero-

shift

Consider the case ag = 0. The control systems takes the
form
xn+1:xn+ufl(xn)a n:0)172)"'>

Sequence (5) of accessibility sets M, is the sequence of
embedded balls with center at the point zy and radius
ne, (see fig. 1).

Hence from (6), volume v, = vol(M,,) = (ne)? (in the
cubic metric). Since (ne)? = V then we get that the
control time nq(e) = £, R = V/4 is the right part of

(1).

3.2 The basic map generated by nonzero
shifts

We shall consider for simplicity the case d = 2. Torus T?
is the factorization R?/Z*. Let (z,y) be coordinates on
plane RZ.

3.2.1 The case a=1

First, consider the case 0 < a9 < 1. Sequence (5) of
accessibility sets M, is the sequence of embedded balls

M
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Figure 1: ap =0

Figure 2: a =1,a9 = %

with center at the point nage and with radius ne. Volume
vn, = vol(M,,) = (ne)? (in cubic metric). Since (ne) =V
then we get that the control time ni(e) = £, i.e. it is the
right part of (1).

Second, consider the case ap > 1. Sequence (5) of ac-
cessibility sets M, lies as it is shown in fig. 3. The bound-

ary of set |J,,~, My is approximated with deficiency by

the line y = a01—1

y = ;5@ +1(e), where ((¢) < n(e). Since () = 0,
n(e) = 0, 253 — 1 as € — 0 then obtained below asymp-
totic estimates of the control time as € — 0 independent
of kinds the functions ((¢),n(e). Therefore, we shall as-
sume that these functions are the zero-functions. Thus,
we assume that y = ﬁx

Further, we shall get upper bounds of control times.
The set |J,,~, My is appoximated with deficiency by the

triangle with the base y = 2ne (diameter of M,) and

x + ((¢) and with surplus by the line
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Figure 3: a =1,a0 > 1.

with the height = ne(ag — 1) (see fig. 3 ). Therefore,
the volume vol(UJ,,s, My) is V,, = (ne)?*(ap — 1). From
V., =V we get that the estimate of the control time is

_1V
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nl( 6@0_1,

i.e. it is the right part of (1).
The lower bounds can be obtained analogously from
the equality V,, + v, = V.

3.2.2 The case of values a close to unity

Let v = 1 — a be a small parameter. In this case, z =
nel™7 is the center and y = 2ne is the radius of the
accessibility set M,,, y = €z is the equation of the line
bounding the accessibility sets. Analogously as in the
case = 1, the union of accessibility sets | J,,~, M, can
be approximated with deficiency by the triangle with the
base 2ne (diameter of M,,) and with the height ne!™.
(see fig. 4 ). Therefore, the volume V., = vol(lJ,,s» M)
is equal to V,, = (ne)(ne'=7) = n%>=7. From V,, =V,
we get that the lower bound of the control time is equal

to
vV

ni(e) = a7

From the equation ne = ape' 7. i.e. from the equation
rn(€) = a(e), we get the value n when the sets M,, are
self-intersecting. Thus, ng(e) = 22. The inequality ng <
ny is true when 0 < v < %, i.e. when % < a <1, since

the inequality ng < m; is equivalent to the inequality

o \/V 517%7 < ﬂ
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Notice that if ¥ — 1 then the lower bound and the upper
bound of control time are close.

Figure 4: a =1,a9 = %

3.2.3 The case of values « close to zero: 0 < a <

1/3

We shall assume that the shift a(e) = ¢ for sufficient
small a. Further, we shall find boundaries for values of
parameter . The diameter of the ball M, is equal to
2ne. Therefore, the value ng of numbers n, when the sets
M, are self-intersecting, can be calculated by formula

ale) e 1
2 2 2el-a’

For n steps where n < ng, the total volume V,, = v; +
.-+ v, is equal to (in special metric)

no(e) =

3

n
V=212 422 + .- +n? ~52?.
We get the estimate of control time from equation V,, =
2 3
V, ie. from equation =~ = R?. Hence,
2
nt (1)?
ni(e) = (3R2) (_> .
€

For small values of parameter ¢ it is true the inequality
n1(e) < no(e) that is equivalent to the inequalities 52% <
251;_“ ie., e5=® < 2 for 0 <a< % Therefore for
0 <ac< %, the value of total volume will exceed the
value the volume of state space before than the balls M,
will be self-intersecting.

3.3 The basic system has deterministic
shifts (deterministic intermixing)

We shall assume that the values a,,n = 1,2,... of pa-
rameter a are assigned so that sets (3.1) are not inter-
sected. Then the control system takes the form

n=0,1,2,...,
(8)

Tpt1 = Ty + Apt1 + ufi(zy,), modl,



The volume v,, = vol(M —n) can be calculated by formula
vn = (ne)? and the total volume

Vi=vi 4+ +v, =17+ ---+nd) ~¢

From the equation V,, = 1, we define the value of param-
eter n which is the control time. Thus, the control time
is the left part of inequalities (1).

3.4 The basic system has random shifts
(stochastic intermixing)
We shall assume that the value a,,n—1,2.... of param-
eter a are assigned corresponding to the distribution p(.).
We shall assume also that p(.) is density of uniform dis-
tribution and values zq, a,, n = 1,... are independent
(white noise). Then the control system takes the form
(8). Further, we shall get the estimate for control time
T(z0) in the mean on initial conditions.

Define the sequence of the accessibility sets from ini-
tial point zg for the sifts ai,...,a,,.... We call the
point a, as the center of the set M,. Notice that
the terms of sequence (6) independent of the terms of
the sequence ag,ai,...,ay,,... where ayg = x9. Denote
an = (ag,a1,...,a,) and

Bri1(Gnt1) = Mpy1(@nt1) \ Ant1(@ni)-
Then
Mn+1((-in+1) = An+1((-in+1) + Bn+1 (C-in+1)-

Define

An+1 (‘_in+1) = An(an) + Bn+1(6n+1)a
Bn—i-l((_in—i-l) = Bn((_in) \Bn+1 (an+1)-

Hence,
Bn+1 (‘_in+1) =X \ An(an)-

For relative volumes, it is fulfilled the following equa-
tions

vol(Apt1(@nt1)) = vol(An(@n)) + vol(Bpt1(@n+1)),
vol(Brt1(@nt1)) = vol(Bn(@y)) — vol(Bnt1(@nt1))-

Define the mean values of relative volumes by formulas
a, = / vol(A,,(@y))dpn(dy),

X
= [ VOl(Ba(@,))dpa ().

X

by = /X VOl (B (@n))dpn (@n),

where p,(@,) is the joint distribution of the values
(a’07 B 7a'n) = a"n

Since for any n, the invariant measure of shift = + a,,
is vol and p(.) = 1, then it is true the following equation

Bn+1 Un+1
—_— = 13

™ o (13)
where v = vol(X) = 1. By formulas (10) — (13), it is
follows that it is true the following equations

bp1 = bn—Pns1 = by —BnVny1 =bp(1=vpp1), bo =1
Obviously,
Uy = %(ns)d,

where the number a depends on Riemannian metric dist
of manifold X. Therefore

bn = (].—’Un)...(].—’l}l)b[).
Hence,

Inb, =In(l —v,) +---+1n(l —vy).

Further, provided the value v, is small, we get that

by ~ — (v + - +v1) = —%Ed(1d+---+nd) ~
d+1
a 4n
—— 14
vear M
It follows from below formula (18). Hence,
a . pdtt
by ~ ——¢* : 1
() e

Let 0 be any small number. Find a number n such that
b, < 0. By formula (15), this inequality is equivalent to
the following inequality

nd+1
V o d+1

< Iné. (16)

Further, we shall assume that the number § depends
on g, i.e., 6 = d(e). Inequality (16) is equivalent to the
following inequality

a(d+1\TT (1, 1\
2ol ——
|4 e §(e)

The left part of (17) give the estimate of mean control
time. In the typical situation d(¢) = ac?. Notice that it
is true the following formula

ny (E) =

<n. (17)

1
rn(€) i=ne ~ eTH In —

d(e)’

where 7, () is radius of the set M, having the volume
vp. Formula (18) substantiates use formula (3.4).

(18)
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Conclusion

The cases considered in previous sections show that the
estimates of control times depend on the degree of chaos
of the basic dynamical system. The more are the values
of the shifts , the more are the degrees of chaos. The
more is randomness, the less is the time of control. Thus,
this situation for neutral systems on torus is analogous
to the situation for hyperbolic systems on torus.
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