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Abstract 
The system of semilinear parabolic equations 

which described the mechanism and dynamics 
organizing of complicated macromolecules in the 
process of prebyology evolution is considered [Eigen,  
Schuster, 1979]. The aim of investigation is searching 
and analyzing stability of spatial non uniform steady 
state solutions (SNSS solutions) of the system. It is 
proved that if the diffusion coefficients are 
sufficiently small then there exist SNSS solutions of 
the system in the form of over fall’s waves or cycling 
wave with the m-th humps. This solution is not stable 
in usual sense. It is proved exclusion principal in case 
of a spatial dynamics of replication macromolecules 
by auto- catalyzing reaction. SNSS solutions of the 
system are stable in sense of mean integral values in 
case of replication dynamics macromolecules by 
hypercycles process. For open models of hypercycles 
replication reaction the analogous results was proved 
too. With help of the Galerkin method numerical 
solutions for various cases of realization SNSS 
solutions was obtained. 
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1. Statement of the problem 
 Let  be a restricted domain D mRD ⊂ , 

 with smooth boundary 321 ,,m = γ  then a spatial 
dynamics of replication macromolecules by auto- 
catalyzing reaction described with the help of 
following system of partial differential equations 
[Bratus’, Posviansky, 2006] : )0( >p
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In case of replication dynamics macromolecules by 
hypercycles process we have the following system: 
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The nonnegative functions  
define the concentration of i-th type of 
macromolecule, , and p are positive constants. 

The functions and  will determine 
further. 
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Suppose that the systems are closed. Thus, in both 
cases we have the following boundary value problem 
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Here n is a normal vector to the boundary  γ .                              
We shall suppose that total number of integral mean 
of molecule’s concentration doesn’t change during 
the all time period. It means that there is the 
following integral invariant: 
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This condition is analog condition on total number 
of elements in finite dimension case [Guckenheimer, 
Holmes, 1997]. From boundary value conditions 
(1.3)  and equality (1.4) it follows the following 
expressions for the functions   , : )t(f1 )t(f2
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Finally, we obtain the mixed boundary value 

problem for system of semilinear parabolic equations 



  
with integral invariant (1.4) and functionals (1.5), 
(1.6). 

We shall seek the solution of these problems on the 
set of the vector functions  
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 Suppose that for any fixed  each function 
 is differentiable with respect of variable t 

and belongs to space as the function of 

variable x for any fixed  t > 0 . 
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Note that if  then the space 

. Here  is 

Sobolev space of quadratic summable functions along 
with its first partial derivatives.  
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Without loss of generality we shall assume further 
that volume of the domain  is equal to unity: D

1=D .  
 Our purpose is investigation existence and stability 

of steady state solution 
 of the 

systems (1.2) and (1.3) respectively:  
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The values 1f  and  2f  are constants:  

              dx)x(uf
n

i D

p
i∑ ∫∫=

=

+

1

1
1                  (1.10)  

                

(1.11)).x(u)x(u

,dx)x(u)x(uf

n

p
i

n

i D
i

=

∑ ∫∫= −
=

0

1
1

2   

                                                                         
Suppose that 
 . Then the critical 

points of correspondent dynamical systems (1.1) and 
(1.2) will steady state solutions of the system (1.7) 
and (1.8). This is so-called space-uniform steady state 
solutions (SUSS solution). Inverse assumption is 
correctly too. The all SUSS solution of the systems 
(1.7) and (1.8) are critical points of the dynamical 
system (1.1) and (1.2) respectively when 
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and go on to including the all apexes 

 (unit on the i-th place)  of 

simplex  . 
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2. Stability of SUSS solutions. 
 

Theorem 2.1 
For  all  SUSS solutions of the system (1.1) 

are unstable with respect to any perturbations from 
the set  if    
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Here 1λ  is the first nonzero eigenvalue of the 
problem
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Here smδ  is Kronecker symbol. 
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fixed moment t. Taking into account the equalities 
(2.1) and (2.3) we can seek the solution of the 
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Substituting (2.6) in to the equations (1.1) and 
separating only linear terms with respect to the 
functions   we obtain the following equations iW
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Direct calculation shows that 

          

pf −= β1  as 

.  Pu =0

 Multiplying the equation (2.7) sequentially on the 
functions )x(sψ  and integrating in  we 
obtain the following system of ordinary differential 

equation with respect to the functions  :                  
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Using the same way as in the case of equation (2.8) 
we obtain the following system of ordinary 
differential equations: 
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Proof. As a before we will seek the solution of the 
system (1.2) in the form (2.6). Substituting the 
expression (2.6) in to the equations (1.2) and 
separating only linear terms with respect to the 
functions we obtain the following equations iW
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Multiplying the equation (2.11) sequentially on the 
eigenfunctions )x(sψ  of the problem (2.2) and 

integrating in  we obtain the following system 
of ordinary differential equation:  

Dx ∈

 

(2.12),...,sn,...,,i

)t(cd)t(c
k

kp

dt

)t(dc s
isi

s
i

i

i
p

s
i

2121

1
1

==

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= −

+

λ
β     

 Note that in this case  . pf −= β2
Applying the Routh-Hurwitz criterion we obtain that 
the system (2.12) is unstable when the condition 
(2.11) is fulfilled for n=2,3,4. General result can be 
obtained with the help of induction method. 
 
3. Existence of 1D non-uniform steady 
state solutions for systems of auto-
catalyzing and hypercycles replication.  
 
Consider one dimensional case of the systems (1.1), 

(1.2):  2
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Theorem 3.1 
For   there exist of spatial non-uniform 
steady state solutions of the system (1.1) when the 
following inequality takes place  
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Theorem 3.2 
Suppose that inequality (3.1) is fulfilled. If a 
coefficients of the system (1.2) can be presented as 
result of the following one parametric perturbation  
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(here ε  is a small parameter) then there exist of 
spatial non-uniform steady state  solutions of the 
system (1.2).  
The proving consists of two steps. In the first one we 
consider the problem of existence solution for 
boundary value problem of the following system  
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Each equation of the system (3.2) can be written in 
the form of Hamiltonian system (see Fig. 1) 
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It is proved that if the inequality (3.1) takes place 
then Hamiltonian systems (3.4) have the solutions 
which satisfy to the boundary value conditions and 
integral invariant (3.3). 
In the second step we consider the initial boundary 
value problem (1.8) for the 1D case as a perturbation 
of the problem (3.2). Using the results of perturbation 
for Hamiltonian system on the plane [Guckenheimer, 
Holmes, 1997] we obtain the result of theorem 3.2. 
 



  

 
 
 
4. Limit behavior of spatial 
autocatalyzing and hypercycling 
replication systems.   
 
Consider the dynamical system of autocatalyzing 
replication (1.1) without taking account a spatial 
distribution 
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The solutions of this system can be presented in the 
following forms                              

p

ii

i
i )s,t(Ik

))s,t(pFexp()t(w

1

0

0
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

ξ
ξ

                                        

 
Here and further                             

  

ττ

ττ

d
t

s
)),s(pFexp()s,t(I

d)(
t

s
f)s,t(F

∫ −=

∫=

00

00

Now we introduce the following definition. 
Definition 4.1 
We shall say that initial conditions for system (1.1) 
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From theorem on differential inequality it follows                        
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Lemma 4.1 
Let us initial conditions for systems (1.1), (4.1) are 
coordinated then necessary and sufficient   to be an 
inequality   
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 Note that inequality (4.4) is fulfilled for any 
coordinated initial conditions iϕ  and value  ts ≤ . 
It is easy to see that if the inequality (4.3) satisfied 
then inequality (4.4) takes place.  
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autocatalyzing replication system (4.1) without taking 
account a spatial distribution. Suppose also that initial 
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Integrating last equality in x and using formula 
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On the other hand a solution of the system (4.1) has a 
property of multystability [Hoffbauer, Zigmund, 
1998]. It means that for almost all initial conditions 
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This concludes the proof.  
Now consider the case of spatial hypercycles 
replication system (1.2)      
  After integrating equations (1.2) in variable  
we obtain the following dynamical system 
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Definition 4.2 
We shall say that spatial steady state solution 

 of the 
system (1.1) or (1.2) has property stability in sense of 
mean integral value if for any 
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It is clear that property of mean integral value 
stability is much weaker then stability in usual sense 
(Lyapunov’s stability).  
 
Theorem 4.2 
Let us  be a 
spatial non uniform steady state (SNSS) solution of 
the system (1.2) such that 
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solutions of the system (1.2). 
Then )(xU is a stable solution of the system (1.2) in 
sense of mean integral value.  
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Let us introduce the following Lyapunov’s function 
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Here δ  is sufficient small value.                                          
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Denote by  μ   the following value:   
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 On the other hand using inequality between 
arithmetic and geometric means we get 
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Finally we obtain that  021 ≤)w,...,w,w(V n& . 
This completes the proof of theorem 4.2.  
 
5. Numerical solution.  
Figures 2-7 show the results of numerical 
calculations for gypercycle steady state solutions of 
the system (1.2) in the case    when  , 3=n 1=p
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Notice that each solutions  correspond 

solutions  . The condition (3.1) is fulfilled 
since  
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Corresponding value of the functional f   (see (1.6)) is 
indicated below of the pictures. With help of 
Galerkin method and the following expansion  
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equation with respect to magnitudes     and 
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In fig. 9-11 the surface  for the same values 
of parameters is presented with initial conditions    
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6. Open model of replication reaction for  
hypercycles.  
The conditions of constancy for total number of 
macromolecule’s concentration doesn’t fulfilled in 
two models proposed in [Boerlijst, Hogeweg, 1991; 
Cronhjort, Nyberg, 1996]. In the first case we have 
the system 
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In second case [6] the system has the form 
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The functions   satisfy to the following 
boundary value conditions 

),( txvi

              00 =
∂
∂

=
∂
∂

),(),( tl
x
v

t
x
v ii  

Here  is density of  i-th  type of 

macromolecule 

),( txvi

ik ,  and  are  positive 

constants,  is the following function:                               
id ig

)(tf

∑ ∫=
=

n

i
i dxtxvtf

1

1

0
),()( . 

 As a before we investigate a steady state solution for 
the corresponding boundary value problems 
generated with the systems (11) and (12). Therefore 
in first case we have the following system of ordinary 
differential equations 
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In second case we obtain the system 
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Theorem 6.1 (Existence of SNSS solution for open 
1D hypercicle’s system). 
Suppose that the following inequalities take place for 
cases of the systems (6.1) and (6.2) correspondingly  
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then there exist SNSS solution of this systems  in the 
form of over fall’s waves. 
All result of this part can be extended on general 
class of the system, which described by the following 
equalities 
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Here the differentiable function   satisfies to 
following conditions: 
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1. The function tends to zero when  tends 
to some fixed value (it is possible variant 
when ); 

)( fG f

∞→f
 2. The function  reach its unique maximal 
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