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Abstract

The system of semilinear parabolic equations
which described the mechanism and dynamics
organizing of complicated macromolecules in the
process of prebyology evolution is considered [Eigen,
Schuster, 1979]. The aim of investigation is searching
and analyzing stability of spatial non uniform steady
state solutions (SNSS solutions) of the system. It is
proved that if the diffusion coefficients are
sufficiently small then there exist SNSS solutions of
the system in the form of over fall’s waves or cycling
wave with the m-th humps. This solution is not stable
in usual sense. It is proved exclusion principal in case
of a spatial dynamics of replication macromolecules
by auto- catalyzing reaction. SNSS solutions of the
system are stable in sense of mean integral values in
case of replication dynamics macromolecules by
hypercycles process. For open models of hypercycles
replication reaction the analogous results was proved
too. With help of the Galerkin method numerical
solutions for various cases of realization SNSS
solutions was obtained.

Key words
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1. Statement of the problem

Let D be a restricted doman D c R™,
m = 1,2,3 with smooth boundary ¥ then a spatial
dynamics of replication macromolecules by auto-

catalyzing reaction described with the help of
following system of partia differential equations

[Bratus, Posviansky, 2006] (p > 0):

ov.(x,t)
———=vi(kpf = f1()+d;Avi(x,1),
ot
t>s vi(x,s)=¢;(x), i=12,..,n,
m 82
vo(x,t)=vu(x,t), A=Zja—2. (1.2)
i=1 ox;

In case of replication dynamics macromolecules by
hypercycles process we have the following system:
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v, (xt) »
———=vi(kv;_; = f2(1))+d;Avi(x,t),
ot

t>s, v;(x,5)=@;(x) (1.2

The nonnegative functions v;(x), i=12,..n
define the concentration of i-th type of
macromolecule, k;,d; and p are positive constants.

The functions f7(¢)and f>(t) will determine
further.

Suppose that the systems are closed. Thus, in both
cases we have the following boundary value problem

Iv;
— | =0 1.3

on

/4

Here nisanormal vector to the boundary .
We shall suppose that total number of integral mean
of molecule’s concentration doesn’'t change during
the al time period. It means that there is the
following integral invariant:

i ] vi(x,t)dx=1I (1.4)
i=1D

This condition is analog condition on total number
of elements in finite dimension case [Guckenheimer,
Holmes, 1997]. From boundary value conditions
(1.3) and equdity (1.4) it follows the following

expressions for thefunctions f7(t) , f>(t):

Ji(t)= % ”kivlpﬂ(x,t)dx (1.5)
i=1 D

f(t)=3 [ky? (x.)dx  (16)
i=1 D

Finally, we obtain the mixed boundary value
problem for system of semilinear parabolic equations



with integral invariant (1.4) and functionas (1.5),
(1.6).

We shall seek the solution of these problems on the
set of the vector functions

WX, 8) = (Vi(X )V ( %0 )V (X,)).
Suppose that for any fixed x € D each function
v;(x,t) is differentiable with respect of variable ¢

and belongs to space H;,H(D) as the function of
variablex for any fixed > 0.
Here H;,H(D) is the space of functions with
norm
1 1
1 |t ?
— pt
bty 7 o 8
p+l D

D z—]

Note that if p=1 then the space

H), /(D) HY(D). Hee H5(D) is

Sobolev space of quadratic summable functions along
with itsfirst partial derivatives.

Without loss of generality we shall assume further
that volume of the domain D is equal to unity:

D=
Our purpose isinvestigation existence and stability
of steady state solution

u(x)=(u;(x)ur(x),.,u,(x)) of the
systems (1.2) and (1.3) respectively:

diAug(x)+u;(x)(kul (x)- f;)=0
i=12.n xeD, 1.7

difui(x)+u;(x)(kul (x)=f5)=0,
i=12,.n uyp(x)=u,(x), xeD, (18)

il g

on
/4

Here u;(x)e HéH(D).
The condition (1.4) transfer to the following equality

S Wu(x)dx=1 (19)
i=1D

The values ]_’ 7 and ]_’ » areconstants:

7= 'Z ﬂul ( x )dx (1.10)

fr=% [T, (xpuf ;(x)dx,
i=1 D

ug(x)=u,(x). (1.12)
Suppose that
dj=dy=..=d,=0. Then the critica

points of correspondent dynamical systems (1.1) and
(1.2) will steady state solutions of the system (1.7)
and (1.8). Thisis so-called space-uniform steady state
solutions (SUSS solution). Inverse assumption is
correctly too. The al SUSS solution of the systems
(1.7) and (1.8) are critica points of the dynamical
syssem (1.1) and (1.2) respectively when
dj=dy,=..=d, =0.

Denote by f; =(k;)'” and consider the

sum 3 = Z,Bl-. Then al SUSS solutions of the

system (1.7) are follows:

1
P:B(ﬁpﬁgwﬁ )
ﬂ(ﬁp B, 08,018,

S] ﬁ(ﬂl’ B —]’Oﬂj-i-]’ ’ﬁs—l’olgs-i-]’ :ﬁ)

and go on to including the &l apexes
Riz( 0,0,..,0,1,0,..,0) (unit on the i-th place) of

n
simplex Zul:], ui20.
i=1
The SUSS solutions of the system (1.8) contains

) 1
only one point: P :E(ﬂZﬂSﬂnIBI)

2. Stability of SUSS solutions.

Theorem 2.1
For p =1 all SUSS solutions of the system (1.1)
are unstable with respect to any perturbations from
theset H 5 if
d:
0<%« P 12 . (2.4)
ki A
Solutions R; =(0,0,...0,1,0...0), i=12,..n
(unit on the i-th place) becomes stable when
di_p

. i=12,..n. 2.5
ko (2.5



Here A, is the first nonzero eigenvaue of the
problem

Ay(x)+Ay(x)=0, xe D, (a—wj =0
on y
(2.2)
The system of the eigenfunctions of this problem
vo(x)=1, {l//i(x)};.x’:] formed a complete
system in Sobolev space HII(D) so that
(Vs Wm)=[[Ws (X)W (x)dx = by, .
D

Here J,,,, isKronecker symbol.
Proof. Let
W(x,t)=(W;(x,t)Wy(xt),.. . W,(x1t) be
the vector function so that W;(x,t )e H g for any

fixed moment ¢. Taking into account the equalities
(2.1) and (2.3) we can seek the solution of the
problem (1.1) in the form

vi(x,t)=ul +Wi(xt)

Wi(x,t)= focf (tyy(x)  (29)

Substituting (2.6) in to the equations (1.1) and
separating only linear terms with respect to the

functions W, we obtain the following equations

", N,
S A A

ot ox
Wi(x0)=9i(x)e Hg
EA .
"y
Direct calculation shows that f; =877 as
0
u =P.

Multiplying the equation (2.7) sequentially on the
functions W (x) and integrating in xe D we
obtain the following system of ordinary differential

equation with respect to the functions cé (t):

dei(t) _ seoy P g
it —Cl(f)(ﬂp dids)

i=12,..n s=012,..

(2.8)

For s=0 wehave:

dt)=cl0)exp-L-t) .
ﬁp

Therefore, cé(t)—)oo as t—>oo.
Note that from the condition (1.8) it follows that

no0
2 ¢ (1)=0 (29)
i=1

Suppose now that u? = 0 ; then

B 3 n
Ji=vi" = X B

1=

i#]

Using the same way as in the case of equation (2.8)
we obtain the following system of ordinary
differential equations:

dej(t)
=—Cj(f)(—p+dj/1s)

dt Y;

dc? (t 1 ..

O omdiag), e

dt 75?

i=12,..n s=012,...

Thus clo(t)%oo as t oo, i#£].

Continuing this process we at last obtain the

corresponding equations for case of points
R =(00,.010..0), i=12,.,n (unit on
I

the i-th place).

dc’(1)
dt

dei (1) _

=—cS(t)(kg+dAg), j#i

S (t) (ki —d; Ay ),

i=12,..n s=012,..

Therefore, if j #1i then c?(t)—)O as t —> oo,

Taking into account condition (2.9) we obtain that
) o0.
Consider evolution of the rest functions

cé(t), s=1,2,.... Suppose that the inequality
(24) is fulfilled then it follows that

ci(t)—>e, s=12,.. a t—>co.In opposte

case all functions cf(t), s=1,2,... tendto zero
as [ —> oo,



Theorem 2.2.
If p=1 then SUSS solution

1
z(ﬂg,ﬂ3,...,ﬂn,ﬂ])of the system (1.2)

is unstable with respect to any perturbations from the
set H 5 when

Py =

n

n
[1d. < P 3
i=1 BPr

Proof. As a before we will seek the solution of the
system (1.2) in the form (2.6). Substituting the
expression (2.6) in to the equations (1.2) and
separating only linear terms with respect to the
functions I¥; we obtain the following equations

oW, 0o Y, 0
—Z=Pki(u,-_1j uj Wip +hki\u_; ) Wi -
ot

2

- oW
— foW; +di =, Wi(x0)=¢, (x)e Hs
ox
(2.12)
Multiplying the equation (2.11) sequentially on the
eigenfunctions /¢ (x ) of the problem (2.2) and

integrating in x € D we obtain the following system
of ordinary differential equation:

N
de; (1) _p| ki
p
dt B ki+1

C;_](t)_diﬂscls(t)

i=12,..,n s=1.2,. (2.12)

Notethat inthiscase f, = 7.

Applying the Routh-Hurwitz criterion we obtain that
the system (2.12) is unstable when the condition
(2.12) is fulfilled for n=2,3,4. General result can be
obtained with the help of induction method.

3. Existence of 1D non-uniform steady
state solutionsfor systems of auto-
catalyzing and hyper cyclesreplication.

Consider one dimensional case of the systems (1.1),
2
(L2: D=(0,1), A= ;—2 The corresponding
X
boundary value problem has aform

avl-(O,t) _ aVl'(O,t) —0
o ox

Without loss of generality we shall assume further
that /=1.

Theorem 3.1
For O0< p<2 there exist of spatia non-uniform
steady state solutions of the system (1.1) when the
following inequality takes place

1

nid. ; -
> |- <(192)p 3.1)
i1 k.

1

Theorem 3.2

Suppose that inequality (3.1) is fulfilled. If a
coefficients of the system (1.2) can be presented as
result of the following one parametric perturbation

di:d0+gli’ ki:k0+€ml~
li’mi =const, &£>0.

(here £ is a small parameter) then there exist of
spatial non-uniform steady state solutions of the
system (1.2).

The proving consists of two steps. In the first one we
consider the problem of existence solution for
boundary value problem of the following system

dl-u;'+ul~(kiulp —f1)=0, i=12,..n,

u;(0)=uj(1)=0. (3.2
Here

7 n 1 p+1
f1=2 .[“i (x)dx .
i=1 0
Asabeforein this case we have

n 1
> Ju;(x)dx=1. (3.3)
i=10
Each equation of the system (3.2) can be written in
the form of Hamiltonian system (see Fig. 1)

dul- _ aH, , dpl :_aHl' . (3.4)
de  dp; dx  Ou

3 -

: k:

Here H; =v#+i(—lul?’ﬂr2 —Quiz).
2 d; pe2 2

It is proved that if the inequality (3.1) takes place
then Hamiltonian systems (3.4) have the solutions
which satisfy to the boundary value conditions and
integral invariant (3.3).

In the second step we consider the initial boundary
value problem (1.8) for the 1D case as a perturbation
of the problem (3.2). Using the results of perturbation
for Hamiltonian system on the plane [Guckenheimer,
Holmes, 1997] we obtain the result of theorem 3.2.
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Fig. 1

4. Limit
autocatalyzing and
replication systems.

behavior of gpatial
hyper cycling

Consider the dynamical system of autocatalyzing
replication (1.1) without taking account a spatial
distribution

(d; =0, i=12,..n)

LU i () kw] (0= Fo(1)
Jo(1)= flwf+ﬂvz t> s, (4.)
J:
wi(s)=¢&;, i=12,...n, iwl-(t)zl
i=1

The solutions of this system can be presented in the
following forms
1

&i exp(=pFp(,s)) | p
I—-ki&ily(t,s)

Wi(f)=[

Here and further

t
Fo(t.s)=[fo(t)dt
S

t
Io(t,s)=Jexp(~pFy(s,t)dz

S
Now we introduce the following definition.
Definition 4.1
We shall say that initial conditions for system (1.1)
and the system (4.1) are coordinated if

& =0 = [[i(x)dx
D

Suppose that initial conditions for systems (1.1), (4.1)
are coordinated then integrating the system (1.1) in
X and using the equality

”Av(x)dx = j%s =0
D y on

we obtain

av:
%f) _k, IDIV;?”(X Jdx =i (1) f1(t)

r>s, Vi(s):(l_)izfi, i=12,...,n.
Here and further

v.() = fgvi (x,0)dx .

Since the volume of domain D is equa unity
(|D| = I) wehave

p+l
J.J.vlf’ﬂ (x,t)dx > L”vi (x,t)dxj — vip+1 (1)

D D

Using this inequality we obtain the following
differential inequality for functions v;(¢) =0

%Zvip+l(t)—\7i(t)f](t)

t>s, vi(s)=@;=¢&;, i=12,.,n

From theorem on differential inequality it follows
1

@; exp(—pF; (t,s))jp

(4.2

it 2{ I=kipil;(t,5)

Here and further
t
Fi(t.s)=]f(t)dz,
S

t
I;(t,s)=[exp(—pF;(s,7))T.

N

Lemma4.l

Let us initial conditions for systems (1.1), (4.1) are
coordinated then necessary and sufficient to be an
inequality

B < fo) < /1(0) (4.3)
Here [ = iﬁiv Bi Z(ki)_]/p-
i=1

Proof. Let us prove at first the left side of inequality
(4.3). Using the condition (1.4) and Heidel’s
inequality we obtain



n p+1
1=(2wxw] <
i=1
D

< s (%kiwf”]:ﬁpfl(r)

i=] kl.l/p =]

n
Under the condition (1.4) we have 2\71- (t)=1.
i=1]

n
On the other hand we have ZWi(t)zl.
i=1
Therefore from the inequality  (4.2) it follows the
following inequality

1
2 (@exp(:pmt,s))]p 3
=1\ I=kigil(t5)

PECE

n (@ exp(—pFo(t,s))Jp

<X —
i=I\ I—kigily(ts)

Note that inequality (4.4) is fulfilled for any
coordinated initial conditions ¢; andvalue s <7.

It is easy to see that if the inequality (4.3) satisfied
then inequality (4.4) takes place.

Suppose now that there exist such moment { that
* *
Jo(t )>fi(t ).

coordinated initia conditions: @;(s)=0, i# j,

Consider the following

@,;(s)#0, s=t"—&. From(4.4)itfollows

@jexp( —pF(t,s)) <
I—k;@li(ts) |
| @jep(—pFo(ts))
S\ I-k@ ()

(45)

From continuity of the functions f3(t"), fo(t' ) it

follows that f,(z) > f1(f) for te (s,t* +£)
when € >0 is sufficient small value. Therefore in
this neighborhood we obtain

Fo(t,s) > Fi(t,s), I(t,s)>1y(t,s). Thus

the inequality (4.5) is not fulfilled. This contradiction
completes the proof of Lemma4.1.

Theorem 4.1 (Exclusive principal) Suppose that
p=1 then for amost all initiad conditions

n
Yi(x), Z¢)l~(x)=] of the problem (1.1) there
i=1
is postive integer j, 1< j<n (that depends
ong,(x)) suchthat v, (x,t) = O foral i # j and
therefore v, (t) > 1 as £ — oo,

Proof. Sincep 21 then space H;,Jr] QHQI .

Here H 5 is a Sobolev space of quadratic summable
functions along with its first derivative. The
eigenfunctions Y (x), s=012... of the problem

(2.2) formed the complete system in the space H 5 .
Consider the following representation for functions
Qi(x), i=12,..,n ;

oi(x)=cf +zi(x), z,(x)= Elafws (x)

Letus w;(t), i=12,.,n are the solutions of

autocatalyzing replication system (4.1) without taking
account a spatial distribution. Suppose aso that initial
conditions of system (4.1) and system (1.1) are
coordinated. We can seek the solution of the problem
(1.2) intheform

V()= wi(t)+ zi(x,1),

Zi(xt)= Y o) (tw(x) (43)
s=1

wi(0)=c?, "0)=¢", m=12,..

Itispossiblesince f;(¢) < f1(?) . Substituting

representation (4.7) into the equations (1.1) we obtain
the following equality

dwilt) | Oai(xl) o p+l )
dt ot l
2
- FiOOw (i) +dy
X

Integrating last equality in x and using formula

fwe(x)dx=0, s=12,..
D

and boundary condition (1.3) we obtain the following
equations

dw;(t) _

ki T vPH (et de = £yt wict)
dt b

Since the functions w; (¢) are solution of the
system (4.1) then we get



ki [[ v (xt )dx=( £y ()~ f,(t)w(t)+
D
+kwP (1) (46)

On the other hand a solution of the system (4.1) has a
property of multystability [Hoffbauer, Zigmund,
1998]. It means that for ailmost al initial conditions

n
&, Y& =1 of the problem (4.1) there is
i=I
positive integer j, [< j<n (that depends on
&) such tha w;(t) >0 for al i#j and
therefore w;(t) >1 a t—>oco. Thus from
equality (4.6) we obtain that for al i # j

ki ([ vPH (0 )dx =0, 1— o0
D

This concludes the proof.
Now consider the case of spatia hypercycles
replication system (1.2)

After integrating equations (1.2) in variable x€ D
we obtain the following dynamical system

av.(t
Vl():ki(V£1’Vi)_f2(t)‘7i(t)
dt

s<t, vi(s)=g;

Here 7;(1) = Jv;(x,0)dx, §; = []g;(x )dx are
D D

integral mean values of the functions
v;(x,2) and @, (x) indomain D correspondently,

(vl.p_l,vl-)=£vip_](x,t)vi(x,t)dx is a scalar

product of the functions v;('x,f) and vﬁl(x,t)

indomain D .

Definition 4.2
We shall say that spatid steady state solution

U(x)=(u;(x)uy(x),..,u,(x)) of the
system (1.1) or (1.2) has property stability in sense of
mean integral value if for any & > 0 thereis 0 > 0
such that for initial conditions satisfied to the
inequalities

@ —u;| <6, i=12...n

it follows that

|‘7i(t)_ﬁi| <g, i=12,..,n

forany £ > 0.

Here and further v;(x,t), i=12,.,n aethe
solutions of system (1.1) or (1.2).

”vi(x,t)dx =v:(t), @ = ”goi(x,s)dx,
D D

w; = [[u(x)dx, i=12,..n
D

It is clear that property of mean integral value
stability is much wesker then stability in usual sense
(Lyapunov’s stability).

Theorem 4.2

Let us U(x)=(u1(x),u2(x),...,un(x)) be a
spatial non uniform steady state (SNSS) solution of
the system (1.2) such that

U(x)=((x)ip(x),....i0,(x))=
1
= ﬂ(ﬁz,ﬂg,.-.,ﬁn,ﬁu

Here P =é(ﬁ2,ﬁ3,..ﬂn,ﬁ1) is unique SUSS

solutions of the system (1.2).
Then U (x) is astable solution of the system (1.2) in

sense of mean integral value.
Let usintroduce the new functions

vi(x,t)=wi(x,0 )k /PR

i=12,.n, R=[[X kj pvj(x,t)dx
D j=0
Itiseasy to verify that

n—1
> [fwi(x,t)dx=1.
Jj=0 D
Note that new variable transfer the point

1 i .
POZE(ﬁZ’ﬁ3"“"Bn"Bf) in to the point

= 11 1 .
P=|—,—,...,—|. The initia system transfer to
nn n

the topological equivalent system
dv_vl. (t)

= RP(0)((wl ) w; )= F(1)(1)),
dt

n—1
f(t)=% Hwi(x,t)wj-’(x,t)dx.

j=0D
Let usintroduce the following Lyapunov’ s function
V(W Wy,...w, ) =—In(w;w,,...w,)—nlnn
It is easy to see tha V(P)=0 and
V(w;,wy,...,w, ) >0 in neighborhood Z 5 of
the point P.



Z = n n
57 wwi =1, ) w-1<s
Jj=1 i=1 n
Here O is  sufficient  small  value
) now w;, W
y==y L ——RPZ((l—ll)—f):
i=1 Wi i=1 Wi
p
n (w;,w!
=—R? z—( ’_"’)—nf =
i=1 Wi
_ P wP ot
=-R Z(Wl’ i_j)(?_n)
W.
l

l_
Denoteby 4 thefollowing value:

M= min {mf((wl, wi_ 1))}
1<i<n
Thus the functions w;(x,t), i=12,.,n ae
nonnegative then 4 = (. Therefore we have
: no ]
V< —Rpﬂ[Z(f)—nz]-
i=1 Wi

On the other hand using inequality between
arithmetic and geometric means we get

n
2

2|~

I

~.

n

s

w;
1

i

M:
=]

Since w; 20 then the function

i=1

n
[Iw; reached its maximal value a the point

P = iii . Therefore we have the
n n n

following inequality

2n2.

Finaly we obtain that V(W;,w5,...,w, ) < 0.
This completes the proof of theorem 4.2.

5. Numerical solution.
Figures 2-7 show the results of numerical
calculations for gypercycle steady state solutions of

the system (L.2) inthecase n =3 when p =1,

kj=ky=k;=1, d;=1-1073,
dy, =210,  d;=3-1073,
Notice that each solutions u; (x) correspond

solutions #; (1— x) . The condition (3.1) is fulfilled
since

3
> di=610" < x7?,
i=1
Corresponding value of the functional f (see (1.6)) is
indicated below of the pictures. With help of
Galerkin method and the following expansion

m
ui(x,t)=u;g+ ZMU cos(r jx)
J=1
the initial problem reduced to the system of algebraic

equation with respect to magnitudes  u; j and

parameter f.
In fig. 9-11 the surface u; (x,t) for the same values

of parameters is presented with initial conditions
#1(x) =0.1, ¢,(x)=0.0536-5",
¢ 3(x) =1.6765-572%,

In the fig.8 shows the corresponding graph for
function £(¢).

08
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In second case [6] the system has the form

;

8 2Vi

v; +d;

1

=0v; +(A=f () (o; +k;vi—1)

v; (x,0)

1
o2

ot

.

=12,.

i

¢i(x)’



Thefunctions v, (x,#) satisfy to the following
boundary value conditions

v, v,
—L(0,5)=—1(l,1)=0
ox ox
Here v; (x,t) isdensity of i-th type of
macromolecule &, , d; and g; are positive
constants, f'(¢) isthefollowing function:
n 1l
J@O) =% Jvi(x)dx.
i=10
As a before we investigate a steady state solution for
the corresponding boundary vaue problems
generated with the systems (11) and (12). Therefore

in first case we have the following system of ordinary
differential equations

ki”i”i—le_f —gu; +djuj =0,
u;(0)=u;()=0, i=12,..,n (6.1)

In second case we obtain the system

—6u; + (L= f)(p; +kju;_)u; +du” =0,
u;(0)=u;()=0, i=12,..,n (6.2)

Here ]_’ is the constant
_onl
f=3% [ui(x)dx.
i=10

Theorem 6.1 (Existence of SNSS solution for open
1D hypercicle' s system).

Suppose that the following inequalities take place for
cases of the systems (6.1) and (6.2) correspondingly

5 i o = epel

7—11171 <ﬂ< ’

i=1 ki ”2
idisﬂz, O<u<l,
=1k 4r

then there exist SNSS solution of this systems in the
form of over fall’swaves.

All result of this part can be extended on general
class of the system, which described by the following
equalities

av; (x,1) 82vl- (x,2)
o iVivi—1 (f) &iVi i axz
Vi (x,0) = ?; (x), i=12,..,n,

aVl' 8v~
Tion=2"L0,=0
ax( 1) ax( )

n 1l
f@O) =% [v;(x,t)dx.

i=10
Here the differentiable function G(f) satisfies to
following conditions:
1. The function G(f)tends to zero when f tends
to some fixed vaue (it is possible variant
when f — oo);
2. The function f G(f) reach its unique maximal
vauewhen f = f* where 0< f* < oo .
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	 Let  be a restricted domain ,  with smooth boundary  then a spatial dynamics of replication macromolecules by auto- catalyzing reaction described with the help of following system of partial differential equations [Bratus’, Posviansky, 2006] :
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