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Abstract: This paper presents satellite orbit estimation using artificial neural networks. A 
multilayer Perceptron is used to estimate the position of a low-earth orbit satellite. The 
main goal is to filter out noisy or incomplete data received from sensors. The algorithm is 
applied to the CHAMP satellite. The same orbit is estimated using the extended Kalman 
filter. Simulation results show superior performance of the neural network as compared to 
the extended Kalman filter. Copyright © 2002 IFAC 
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1. INTRODUCTION 

Low-Earth-Orbit (LEO) satellites circle the earth in 
different altitudes and inclinations. The orbit 
inclination is the angle between the plate of orbit 
and the equator. The altitude of LEO satellites is a 
few hundred kilometres above the earth surface 
(Sidi, 2000). 
Different filters, such as recursive filters, batch 
filters, and Kalman filters have been proposed in 
literature for position estimation of LEO satellites 
(Mahy, 2001; Psiaki, 2002; Vergez et al. 2004; 
Yoon et al., 2000). In this paper, Neural Networks 
(NN) are employed for the position estimation of 
CHAMP LEO satellite. The real data for simulations 
are obtained from the following websites:  
  -http://www.johnstonsarchive.net/physics/sp-

satellites.html  
  - http://www.heavens-above.com.  
In order to compare the performance of the 
proposed method, the Extended Kalman Filter 
(EKF) is also used to estimate the position of the 
same satellite. Simulation results show superior 
performance of the NN as compared to the EKF.  

2. DYNAMIC OF SATELLITE ORBIT 
The law of planetary movements, which was 

discovered by Kepler about 400 years ago, is the 
basis of satellites rotation around the earth. 
According to the basic principles of these laws, if the 
mass of satellite is ignored as compared to the mass 
of the earth, and if the earth is assumed to be 
spherical, then according to the Newton’s gravity 
law, the acceleration of satellite can be calculated as 
(Montenbruck and Gill, 2000) 

3

GM
r

⊕= −&&r r                                (1) 

where M⊕  is the mass of earth, 
11 3 1 2(6.67259 0.00085).10 m kg sG − − −= ±  is the 

gravity constant, r  is the distance of satellite from 
the centre of earth, and r−r  is the unit vector 
connecting the satellite to the centre of earth. 
Equation (1) shows that the acceleration of satellite is 
inversely proportional to the distance of satellite 
from the centre of earth. In order to describe rotation 
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of the satellite around the earth, the following 
independent parameters should be defined:  

[ ]Ta e i Mω= ΩR          (2) 

where a, called the semi-major axis and measured in 
meter or feet, is a constant defining the size of the 
orbit, e, called the eccentricity, is a constant defining 
the shape of the orbit (0=circular, less than 
1=elliptical), i, called the inclination, is the angle 
between the equator and the orbit plane, Ω , called 
the right ascension of the ascending node, is the 
angle between the vernal equinox and the point 
where the orbit crosses the equatorial plane 
(pointing to the north), ω , called the argument of 
perigee, is the angle between the ascending node 
and the orbit's point of closest approach to the earth, 
and M, called the true anomaly, is the angle between 
the perigee and the satellite in the orbit plane. 
Two orbital elements, a and e, define the shape of 
orbit, M defines the position of satellite on the orbit, 
and three other elements (i.e. i, Ω  and ω ) define 
the direction of orbit in the space. These six 
elements are calculated in terms of the position and 
the velocity vector (Tapley, 2004) 

[ ]Tx y z x y z=x & & &                    (3) 

where x, y and z define the position in ECEF 
coordinate system. Both R and x can be used to 
define the position of satellites. In this paper, x is 
employed for estimation of LEO satellite position. 
Linear differential equations like .=x F x&  are not 
appropriate for discrete estimation as in Kalman 
filter. For instance, transition matrix in Kalman filter 
is considered generally as k k-1x .xϕ= , which can be 
written as 
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where the transition matrix ϕ  is equal to  
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which can be calculated as  
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Using the expansion series  

       (7)2 2 3 31 1
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and omitting the nonlinear terms yields 

                                 (8)t= + ∆Φ I F 

Using the equation of motion of satellites in (1), the 
following equations are obtained: 
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Calculating the partial derivatives with respect to the 
positions and speeds, the dynamic equation of 
satellite movements are  
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When the position of satellite (i.e. the range, the 
azimuth and the elevation angles) is continually 
available, one can estimate the position of satellite 
with respect to the earth tracking station. Then, using 
the position of the earth-tracking station, the 
measured positions can be calculated with respect to 
the earth centre.  
In this paper, the orbital estimation of the CHAMP 
satellite is considered. The orbital specification of 
this satellite is shown in Table 1. 
 

 
Table 1: Orbit specification of CHAMP satellite 

Orbit inclination (i) 87.2346o  

Argument of perigee ( ω ) o5653.81  
Right Ascension of Ascending  
Node( Ω ) 

o3713.303  

Semi-major axis (a) 361 Km  

Eccentricity (e) 0.00033  

The closest distance from the 
orbit 

358 Km  

The far distance from the orbit 364 Km  

The time for one complete 
rotation 91.58min  



     

3. ORBIT ESTIMATION USING EXTENDED 
KALMAN FILTER 

Since the relationship between the measurements of 
the satellite position is nonlinearly related to the 
state of the system, this violates the linear 
assumption of the Kalman filter. The Extended 
Kalman Filter (EKF) is an ad hoc technique to 
provide a way to use the standard Kalman filter on 
non-linear process or measurement models resulting 
in sub-optimal estimates. The measurement model 
and process model are linearized about the mean 
and covariance at every iteration, and then, the 
standard Kalman filter is applied to the linearized 
models. 
In the linear discrete Kalman filter, the state of the 
system can be updated with a straightforward matrix 
multiplication ( 1, )n n+F . Similarly, converting 
from the state to measurement space is 
accomplished with another matrix 
multiplication ( )nC . Both of these matrices are 
approximated in the EKF using a first order Taylor 
expansion. To accomplish this, the Jacobian matrix 
of both the process model and the measurement 
model need to be calculated. Since the process 
model is already linear, the calculation is trivial, 
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But, the Jacobian matrix of the nonlinear 
measurement model is nontrivial 
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These linearized matrices are incorporated into the 
EKF using the following equations. 
The Kalman gain is calculated as (Haykin, 2001) 

1
2 ))()()1,()()(()1,()( −+−−= nnnnnnnnn HH

f QCKCCKG

(15) 

where 1Q , 2Q , F and C  are the covariance 
process-noise, the covariance measurement noise, the 
linearized state transition, and the linearized 
measurement matrices, respectively. The estimation 
error is equal to 

))(ˆ,()()( 1−−= nYnnnn xCyα         (16) 

where ( )ny  is the vector containing the actual 
measurements and ),( xC n  is the measurement 
model function at time n. The new state estimates are 
calculated as 

)()()(ˆ)(ˆ 1 nnYnYn fnn αGxx += −              (17) 

The covariance error matrix is equal to 
)1,())()(()( −−= nnnnn f KCGIK            (18) 

Then, the next estimates of states are calculated as 
))(,()1(ˆ nn YnnYn xFx =+                   (19) 

And the error covariance for the next iteration is 
predicted, 

)(),1()(),1(),1( 1 nnnnnnnn H QFKFK +++=+ (20) 
where ),1( nn +F  is the Jacobian matrix evaluated at 
the current state estimate.  
Figs. 1-5 show the simulation results for the EKF for 
estimating the position of the CHAMP satellite in 
one complete rotation around the earth. The 
measurement noise is 7% of the actual values. The x, 
y and z variables are shown in km, measured from 
the surface of the earth and in the direction of the 
earth centre. Next, it is assumed that there exists 
packet loss in data. That is, in the time 
interval 50 60 mint< < , no data is received for 
estimation. Fig. 4 shows the estimated position in this 
case. In addition, Fig. 5 shows the noisy measured 
data and the estimated states in 3D. 
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Fig.1. Estimation errors along the x, y and z axis 

using EKF 
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Fig. 2. Position estimation of the CHAMP satellite 

in 3D, using the EKF 
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 Fig. 3.   Position estimation in polar coordinates          
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Fig. 4. Estimation error using the EKF with packet 

loss in data       
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Fig. 5. Position estimation in 3D, when there is data 

packet loss 
 
 

4. ORBIT ESTIMATION USING NEURAL 
NETWORKS 

It is a well-known fact that neural networks are 
capable of estimation. Different neural networks are 
employed for estimation in engineering applications. 
In this paper, a multilayer perceptron with error 
backpropagation algorithm is used for estimation of 
satellite position. The goal of this algorithm, which is 
based on the gradient descent method, is to minimize 
the instantaneous estimation error (Haykin, 1999) 

( ) ( )22( ) ( ) ( ) ( ; ) ( )T
oE k y k y k F y k= − = −x w (21) 

where ( )oy k is the output of the neural network and 
( )y k  is the desired output at kth iteration step, 

respectively. The vector w contains the adjustable 
weights (synaptic and bias) of the network.  

The network employed in this paper, has three 
layers: the input layer, which contains the input 
nodes, with seven inputs, the hidden layer, which 
contains neurons with nonlinear activation function 
(sigmoidal functions), and the output layer, which 
contains neurons with nonlinear activation function 
(sigmoidal functions) and provides the estimated 
output of the network. For satellite estimation, in this 
paper, there are 7 inputs, 50 neurons in the hidden 
layer, and 1 output in the neural networks. Hence, 
three neural networks are used to estimate x, y and z, 
respectively. The inputs to the neural networks are 

])3()2()1()2()1()()1([ −−−−−+ iyiyiyiyiyiyiy mmmdddd , 
where dy  is the desired orbit and the my  is the 
measurement data. In order to avoid saturation in the 
neurons during training of the network, the inputs 
and outputs are normalized between zero and one 
(Haykin, 1999). Weights are initialized randomly 
using small numbers. The learning rate is equal to 
0.9. Adaptations of weights are carried out on-line. 
That is, there is no stop in training of the network. 

Figs. 6-9 show the simulation results. As these 
Figures show, the neural network can estimate the 
position of the satellite much better than the EKF, 
even when there is packet loss in data. 
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Fig. 6.   Estimation errors along the x, y and z axis, 
using neural network 
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Fig  7.    Position estimation of the CHAMP satellite  
 in 3D, using the neural network 
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 Fig. 8.   Position estimation in polar coordinates 
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Fig. 9.   Estimation error using the neural network, 

when there is packet loss in data. 
 
 

5. CONCLUSION 
In this paper, the extended Kalman filter and neural 
networks were employed for estimation of LEO 
satellites orbit. In the case of the extended Kalman 
filter, the initial values of states must be defined 
properly; otherwise states of the filter can diverge, 
yielding instability. On the other hand, this problem 
does not exist in neural network, since initial values 
of weights are selected randomly. The RMSE1  for 
estimating the range along the x, y and z axis using 
the extended Kalman filter are 31, 11 and 7.2 Km, 
respectively, and for the neural network these errors 
are 0.094, 0.0092 and 0.0076 Km, respectively. In 
other words, the on-line trained neural network could 
estimate the orbital position of the satellite much 
better the extended Kalman filter. Moreover, both 
methods could cope well with data loss. 
Nevertheless, the neural network still shows less 
estimation error in this case. One important fact for 
the neural network is that, it must be trained on-line 
with no stopping in the training. 
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