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Abstract Furthermore, we present the means by which we are

We present an experimental set-up that allows to studyable to modify these properties to represent a variety of
both controlled and uncontrolled synchronization be- different oscillators. Next, in sectidd 4, we present an
tween a variety of different oscillators. Two experi- experiment of the synchronization of two Duffing os-
ments are presented where uncontrolled synchroniza<illators. We analyze the stability of the synchroniza-
tion between two types of identical oscillators is inves- tion manifold and continue with numerical and experi-
tigated. First, uncontrolled synchronization between mental results. Sectién 5 presents an experiment where
two Duffing oscillators is investigated and second, un- the set-up is adjusted to model two rotating eccentric
controlled synchronization between two coupled rotat- discs which are coupled through a third disc mounted
ing elements is discussed. In addition to experimental on a common axis. Conclusions and future research are
results we provide both analytical and numerical results presented in sectidg 6.
that support the experimental results.

2 Experimental Set-up

Key words In order to experimentally study synchronization be-
Synchronization, Experiment, Duffing oscillator, tween coupled oscillators a set-up consisting of two os-
Huygens experiments cillators, mounted on a common frame has been de-

veloped (see figurgl 1 amd 2). The parameters of pri-

1 Introduction

Inthe 17th century the Dutch scientist Christiaan Huy-
gens observed a peculiar phenomenon when two pen-
dula clocks, mounted on a common frame, seemed to
'sympathize’ as he described it. What he observed was
that both clocks adjusted their rhythm towards anti-
phase synchronized motion. This effect is now known §
as frequency or Huygens synchronization and is caused
by weak interaction between the clocks due to small
displacements of the connecting frame. In (Benpett

et al, 2007) an extended analysis of this phenomenon
is presented. In (Oudt al,, 2006) the authors present

finally, in (Pogromskyet al, 2003; Pogromskyet
al., 2006) a study of the uncontrolled as well as the Figure 1. Photograph of the set-up.
controlled Huygens experiment is presented.
In this paper we present an experimental set-up
(Tillaart, 2006) that allows to study both controlled and
uncontrolled synchronization between a variety of dif- mary interest are presented in table 1. The set-up con-
ferent oscillators. In sectidd 2 the set-up is introduced tains tree actuators and position sensors on all degrees
and we present the dynamical properties of the system.of freedom. Furthermore, although the masses of the



oscillators {n) are fixed, the mass of the connecting 2.1 Adjustment of the Systems’ Properties

beam (/) may be varied by a factor 10. This allows

for mechanical adjustment of the coupling strength.

Table 1. Parameters in experimental set-up.

In order to experiment with different types of oscil-
lators, the derived properties (stiffness and damping)
are adjusted. Note that, since we know the damping
and stiffness present in the system and we can fully
measure the state of the system, we may adjust these

Oscillator 1 Oscillator 2 Frame / beam Properties, using actuators, to represent any dynamics

Mass m m M
Stiffness k1() k() k3(+)
Damping Bi(:) Ba(:) B3(-)
T3 T1 To
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Figure 2. Schematic representation of the set-up.

we want. This allows modeling of different types of
springs (linear, cubic), gravity (pendula) and any other
desired effect within the limits of the hardware. In the
next part of this paper we present two examples of this
type of modulation. The system is first adapted to an-
alyze synchronization between Duffing oscillators and
secondly to analyze the synchronizing dynamics of two
coupled rotating eccentric discs under the influence of
gravity.

3 Definition of Synchronization

Before continuing with the experimental and analyt-
ical results the notion of synchronization should be
defined in more detail. Due to the large amount of
phenomena that seems to be gathered under the term
synchronization, it is often difficult to correctly define
synchronization. In (Pikovskgt al,, 2001) the authors
introduce the concept of synchronization as:

A schematic representation of the set-up is depicted in Synchronization is the adjustment of rhythms of

figure[2 and the equations of motion are:

m:il = 7!11(%1 7$3)761(i‘1 *i3)+F1 (21)
mig = 7%2(%2 — $3) — 62(i‘2 — $3) + FQ (22)
Mz = m(ml — 173) + Hg(mg — 173) (23)

— k3 (x3) + B1(d1 — 23) + Ba(d2 — 23) — F3(d3)
+ '3 — I — Iy,

wherem, M € Rygandz; € D; C R, i = 1,2,3

oscillating objects due to their weak interaction.

Although the above concept provides an insightful
idea of synchronization a more rigorous definition is
provided in (Blekhmaret al., 1997):

Definition[3.1: (Asymptotic Synchronization)
Given k systems with state; € X; and outputy; €
Y;, i=1,..., kandgiver? functionalsg; : J; x...x
Ve x T — R!, whereT is a set of common time in-
stances for alk systems an@/; are the sets of all func-

are the masses and displacements of the oscillators andions fromT into the outputsy;. Furthermore defining

the beam respectively. Functiors : R — R, 3; :

R — R describe the stifiness and damping character- Solutionsz: (-), ...,

istics present in the systent; are the actuator forces

that may be determined such that the experimental set-chronized w.r.t the functionals, . ..
up models a large variety of different dynamical sys-

tems (seg 2]1).

The stiffness and damping in the system are found to

be very well approximated by:

5

ki) =D kigd’ (2.4)
=

Bi(qi) = bigi, (2.5)

Whereq1 =1 — 3,02 = T2 — T3 andQ3 = I3. The
values ofk;; andb; V i = 1,2, 3 have been experimen-

tally obtained and will be used to modify the systems’ |g;(o,y1(-),-..,07,yx(-),t)] < e

properties in the sequel.

a shift operatoe; s.t. (o, y)(t) = y(t+ 7), we call the
xi () of systemsyy, ..., X, with
initial conditionsz1(0), . .., z,(0) asymptotically syn-
y ge if:

gj(Jlel(')v"'7JTkyk(')7t)EO V]:1,7€
(3.1)
is valid fort — oo and somer,, € T.

Definition[3.2: (Approximate Asymptotic Synchroniza-
tion).

Using the notations introduced in definitigh 3.1, we call
systems-y, ..., X approximately asymptotically syn-
chronized w.r.t. to the functionals, . . ., g, if for some
sufficiently smalle > 0:

Vi=1,2,....0
(3.2



is valid fort — oo and somer,, € T.

In the sequel definition] 3.1 andl 3.2 will be used to de-
fine (approximate) synchronization.

4 Example 1: Coupled Duffing Oscillators

In this section experimental results with respect to two
synchronizing Duffing oscillators are presented. Af-
ter introducing the dynamical system an analysis of the
limiting behaviour of the system is presented. Finally,

both numeric and experimental results are presented

and discussed.

4.1 Problem Statement & Analysis

3 Z1 €2
AMA Kd Kd
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Figure 3. Schematic representation of the set-up modelingbu-
pled Duffing oscillators.

Consider the system as depicted in figure 3, where:,

Ka(qi)

=wjq; +9¢; (4.1)

whereg; = x; — x3 and constantsg, ¥ € R~g.

The system under consideration represents two un-
driven, undamped Duffing oscillators coupled through
a third common mass. The set-up depicted in figlire 2
can be adjusted to model this system by defining the
actuator forces as:

F, = ki(q:) + Bi(¢:) —
F;=0

ka(qi), 1=1,2 (4.2)
(4.3)

WhereF; = 0is chosen because, in the original set-up,
the beam already models the situation as depicted in
figure[3 (linear stiffness and damping) fairly accurate.
The equations of motion of the resulting system are:

(4.4)
(4.5)
(4.6)

mi; = —kq(x1 — x3)

mie = —kq(z2 — x3)

Mis = kq(x1 — x3) + Ka(x2 — 23)
— kx3 — bxs,

wherek, b € R~ are the stiffness and damping coeffi-
cients of the beam.

Before continuing with the experimental and nu-
merical results the systems’ limiting behaviour is
analyzed. In order to do so the notion of anti-phase
synchronization needs to be defined:

Definition[4.1:((Approximate) Anti-phase Synchroniza-
tion).

Consider two systenis; andX:, with initial conditions
x10 @andzyo and corresponding solutions (z19, t) and
x2(x20,t). Furthermore, assume that bath(x10,t)
andxzy(za0,t) are periodic in time with period T. We
call the solutions ok (210, t) andaz(x20, t) (ApPpProx-
imately) asymptotically synchronized amti-phaseif
they are (approximately) asymptotically synchronized
according to definitioh]3.1 ¢d 3.2, with:

90 =m() —ao(gym(). @)

with a € R+ a scale factor and(z) a shift operator
2
over half an oscillation period.

Using definition[4.1 it can been shown that the
dynamics of the oscillators if{(4.4)[=(4.6) converges to
anti-phase synchronization &s— co (see Lemmal4.1
below).

Lemmal[#.1: (Global Asymptotic Stability of the
Synchronization Manifold)

Consider the system of nonlinear differential equations
(4.3) - (4.6). The trajectories of the oscillatdts and

3J» will converge to anti-phase synchronized dynamics,
according to definitiof]4.1 as — oo for all initial
conditions.

Proof (of Lemmal4.1)

Consider the syster (4.4)[(#.6). To analyze the limit
behaviour of this system, the total energy is proposed
as a candidate Lyapunov function:

s &
Z/Fal(s) ds, (4.8)

3
1 .
i=1 i=17)
wherem; = mqg = m, m3 = M,fi =x; — T3, 1 =
1,2, 63 = 3, Iii(qi) = /id(qi) andmg = kxs. Cal-
culating the time derivative df along the solutions of

the system[(414) {{46) yields:

V = —bil. (4.9)
Hence, we find’ < 0 and the system may be analyzed
using LaSalle’s invariance principle.

Equation[(4.D) implies that is a bounded function of
time. Moreover,z;(t) is a bounded function of time
and will converge to a limit set whefé = 0. On this
limit seti3 = #3 = 0, according to[(4]9). Substitut-
ing this in system[{4]4) {(416) yields; = 0 on the



systems’ limit set. Substitutings = 3 = 23 = 0in

(4.8) shows:
ka(r1) = —ka(z2) (4.10)

Sincexy is a one-to-one, odd function, this implies:

(4.11)

X1 = —XT2
Finally, substitutingr; = —z5 in (4.4) - (4.5) yields:
(4.12)

Ty = —T7.

Summarizing, it has been shown that any solution of
@.4) - (4.8) will converge to anti-phase synchronized
motion according to definitidl 4.1 as— co. O

The next paragraph will present numerical and experi-

mental results that support the analysis provided inthis __ os}

section.

4.2 Experimental & Numerical Results
In order to experimentally investigate the synchroniz-
ing behaviour of two coupled Duffing oscillators the

set-up has been modified as specified in the previous
paragraph. The oscillators are released from an ini-__

tial displacement of~3 mm and —2.5 mm respec-

tively (approximately in phase) and allowed to oscillate £

freely.
Figure[4 shows the sum of the positions of the oscil-
lators and the position of the beam v.s. time. As be-

comes clear from figufd 4, approximate anti-phase syn-

chronization occurs withid0 s. Furthermore, figure

shows the limiting behaviour of both oscillators and
the beam. Although the amplitudes of the oscillators
differ significantly, the steady state phase difference is
1.017. The most probable cause for the amplitude dif-

ference is the fact that the oscillators are not exactly

Figure 4. Experimental results: (top) Sum of the displacemef
both oscillators. (bottom) Displacement of the connectirgm.
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Figure 5. Experimental results: Steady state behaviounetys-
tem. (top) Displacement of the oscillators {1, - £2). (bottom)
Displacement of the connecting beam.

identical. As a result, the beam does not come to a g the experiment, the final amplitudes of the oscilla-

complete standstill, although it oscillates with an am-
plitude that is roughly ten times smaller than that of the
oscillators.

In addition to the experimental results, numerical re-

sults are provided in figufd 6 aftl 7. The parameters in

the simulation are chosen as shown in téble 2.

Table 2. Parameters in numerical simulation.
w,=1526 Y9=814 M =0.8
k=1 b=5

m=1

tors differs by a factor 15. This is due to the fact that
in the experiment the damping is over compensated,
resulting in larger amplitudes of the oscillators. This
presents no problem since the residual energy may dis-
sipate through the motion of the beam, which does not
come to a complete standstill due to the amplitude dif-
ference between the oscillators. In the numerical sim-
ulation almost exact anti-phase synchronization with
equal oscillator amplitudes is achieved and this mecha-
nism fails.

Finally, note that some of the differences between the
experimental and simulation results may be coped with
by tuning either the parameters of the numerical sim-

The results presented in figurk 6 ddd 7 correspond toulation or those of the set-up itselfThe question of

the experimental results provided[ih 4 ddd 5 respec-

tively. Although the oscillation frequencies of the os-
cillators are almost equal (within 5%) in the simulation

identifying a model can thus be reversed to tuning the
parameters of the set-up rather than those of the model
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Figure 6. Numerical results: (top) Sum of the displacemefit®oth
oscillators. (bottom) Displacement of the connecting beam Figure 8. Schematic representation of the set-up modefing.ou-
pled rotating elements.
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The equations of motion of the system depicted in fig-

B ure[d are:
£
0; = —9; (k (91 — 93) + 6; sin@i) , =1, 2(51)
2
—_—— by = 03()_k(0; —03) (5.2)
j=1
g —k393 — b393 — 63 sin 93),
b mmmm e e e mmmmmmmemmm—mm—————————— -
=
5 with ¥; = —-L— andd; = m,g/;. The modification
P mz w4 me 8 # 2  dea e s 47 to the set-up is now more involved than in the previ-
t[s] ous example. First of all, the translation coordinates
Figure 7. Numerical results: Steady state behaviour of ystem. should be mapped to rotation angtegarbitrary map-
(top) Displacement of the oscillators {1, - Z2). (bottom) Dis- ping). Secondly, in case of the Duffing oscillator the
placement of the connecting beam. actuation forced”; and F, were meant to act on both

the oscillators and the connecting mass. In the situa-
tion depicted in figur€l8 the actuation force generated
to model the coupling between the oscillator discs and
the middle disc by means of the torsion spring should
5 Example 2: Two Coupled Rotary Elements again act on the oscillators and the connecting beam
Next to the synchronization of Duffing oscillators we in our set-up. However, the part of the actuation force
investigated synchronization in a system of coupled ro- that models the influence of gravity on the oscillators
tating disc as depicted in figuré 8. First the dynamics should only act on the oscillators and not on the con-
of the system will be specified in more detail and next necting beam, since in figufé 8 the gravity on discs 1
experimental results will be presented. and 2 exerts a force only on the corresponding disc and
not directly on the middle mass.
In order to adjust the set-up in figuré 2 to model the
5.1 Problem Statement system in figur€I8 the actuator forces are defined as:

Consider the system as depicted in figure 8. This sys-
tem consists of three discs. Discs 1, 2 represent the  F; = x;(q;) + Bi(d:) — i (n; + gi) ,i = 1,2(5.3)
oscillators and disc 3 is connected to both other discs ~

Fy = ka(x3) — 0 +93)—3g(), 5.4

by torsion springs with stiffnesk. Each of the discs ’ 3(23) 3 (s +93) = () ®4)
has an eccentric mass at a distadcéom it's center _ _ _

(¢, = £5 = ¢). Furthermore the middle disc is coupled With x;(¢;) and p;(¢;) as defined earlier; =
to the world by a torsion spring with stiffnegs and k(6 — 0 = 1.9 0 — 6 sinf ands — 2 90
a torsion damper with constaht The rotation of the (6:=03), =1,2, 9 = disin6; andg ]; i
discs is represented w.r.t. the world by the angles Damping is left to be the natural damping of the beam
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