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Abstract
We present an experimental set-up that allows to study

both controlled and uncontrolled synchronization be-
tween a variety of different oscillators. Two experi-
ments are presented where uncontrolled synchroniza-
tion between two types of identical oscillators is inves-
tigated. First, uncontrolled synchronization between
two Duffing oscillators is investigated and second, un-
controlled synchronization between two coupled rotat-
ing elements is discussed. In addition to experimental
results we provide both analytical and numerical results
that support the experimental results.
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1 Introduction
In the 17th century the Dutch scientist Christiaan Huy-

gens observed a peculiar phenomenon when two pen-
dula clocks, mounted on a common frame, seemed to
’sympathize’ as he described it. What he observed was
that both clocks adjusted their rhythm towards anti-
phase synchronized motion. This effect is now known
as frequency or Huygens synchronization and is caused
by weak interaction between the clocks due to small
displacements of the connecting frame. In (Bennettet
al., 2002; Pantaleone, 2002; Senator, 2006; Kuznetsov
et al., 2007) an extended analysis of this phenomenon
is presented. In (Oudet al., 2006) the authors present
an experimental study of Huygens synchronization and
finally, in (Pogromskyet al., 2003; Pogromskyet
al., 2006) a study of the uncontrolled as well as the
controlled Huygens experiment is presented.
In this paper we present an experimental set-up

(Tillaart, 2006) that allows to study both controlled and
uncontrolled synchronization between a variety of dif-
ferent oscillators. In section 2 the set-up is introduced
and we present the dynamical properties of the system.

Furthermore, we present the means by which we are
able to modify these properties to represent a variety of
different oscillators. Next, in section 4, we present an
experiment of the synchronization of two Duffing os-
cillators. We analyze the stability of the synchroniza-
tion manifold and continue with numerical and experi-
mental results. Section 5 presents an experiment where
the set-up is adjusted to model two rotating eccentric
discs which are coupled through a third disc mounted
on a common axis. Conclusions and future research are
presented in section 6.

2 Experimental Set-up
In order to experimentally study synchronization be-

tween coupled oscillators a set-up consisting of two os-
cillators, mounted on a common frame has been de-
veloped (see figure 1 and 2). The parameters of pri-

Figure 1. Photograph of the set-up.

mary interest are presented in table 1. The set-up con-
tains tree actuators and position sensors on all degrees
of freedom. Furthermore, although the masses of the



oscillators (m) are fixed, the mass of the connecting
beam (M ) may be varied by a factor 10. This allows
for mechanical adjustment of the coupling strength.

Table 1. Parameters in experimental set-up.

Oscillator 1 Oscillator 2 Frame / beam

Mass m m M

Stiffness κ1(·) κ2(·) κ3(·)

Damping β1(·) β2(·) β3(·)

x1 x2x3

κ1 κ2κ3

β1 β2β3 m m

M
F1 F2F3

Figure 2. Schematic representation of the set-up.

A schematic representation of the set-up is depicted in
figure 2 and the equations of motion are:

mẍ1 = −κ1(x1 − x3) − β1(ẋ1 − ẋ3) + F1 (2.1)

mẍ2 = −κ2(x2 − x3) − β2(ẋ2 − ẋ3) + F2 (2.2)

Mẍ3 = κ1(x1 − x3) + κ2(x2 − x3) (2.3)

− κ3 (x3) + β1(ẋ1 − ẋ3) + β2(ẋ2 − ẋ3) − β3(ẋ3)

+ F 3 − F1 − F2,

wherem, M ∈ R>0 andxi ∈ Di ⊂ R, i = 1, 2, 3
are the masses and displacements of the oscillators and
the beam respectively. Functionsκi : R 7→ R, βi :
R 7→ R describe the stiffness and damping character-
istics present in the system.Fi are the actuator forces
that may be determined such that the experimental set-
up models a large variety of different dynamical sys-
tems (see 2.1).
The stiffness and damping in the system are found to

be very well approximated by:

κi(qi) =

5
∑

j=1

kijq
j (2.4)

βi(q̇i) = biq̇i, (2.5)

whereq1 = x1 − x3, q2 = x2 − x3 andq3 = x3. The
values ofkij andbi ∀ i = 1, 2, 3 have been experimen-
tally obtained and will be used to modify the systems’
properties in the sequel.

2.1 Adjustment of the Systems’ Properties
In order to experiment with different types of oscil-

lators, the derived properties (stiffness and damping)
are adjusted. Note that, since we know the damping
and stiffness present in the system and we can fully
measure the state of the system, we may adjust these
properties, using actuators, to represent any dynamics
we want. This allows modeling of different types of
springs (linear, cubic), gravity (pendula) and any other
desired effect within the limits of the hardware. In the
next part of this paper we present two examples of this
type of modulation. The system is first adapted to an-
alyze synchronization between Duffing oscillators and
secondly to analyze the synchronizing dynamics of two
coupled rotating eccentric discs under the influence of
gravity.

3 Definition of Synchronization
Before continuing with the experimental and analyt-

ical results the notion of synchronization should be
defined in more detail. Due to the large amount of
phenomena that seems to be gathered under the term
synchronization, it is often difficult to correctly define
synchronization. In (Pikovskyet al., 2001) the authors
introduce the concept of synchronization as:

Synchronization is the adjustment of rhythms of
oscillating objects due to their weak interaction.

Although the above concept provides an insightful
idea of synchronization a more rigorous definition is
provided in (Blekhmanet al., 1997):

Definition 3.1: (Asymptotic Synchronization).
Givenk systems with statexi ∈ Xi and outputyi ∈
Yi, i = 1, . . . , k and givenℓ functionalsgj : Y1×. . .×
Yk × T 7→ R

1, whereT is a set of common time in-
stances for allk systems andYi are the sets of all func-
tions fromT into the outputsYi. Furthermore defining
a shift operatorστ s.t. (στy)(t) = y(t+ τ), we call the
solutionsx1(·), . . . , xk(·) of systemsΣ1, . . . , Σk with
initial conditionsx1(0), . . . , xk(0) asymptotically syn-
chronized w.r.t the functionalsg1, . . . , gℓ if:

gj(στ1
y1(·), . . . , στk

yk(·), t) ≡ 0 ∀ j = 1, . . . , ℓ

(3.1)
is valid for t → ∞ and someστi

∈ T.

Definition 3.2: (Approximate Asymptotic Synchroniza-
tion).
Using the notations introduced in definition 3.1, we call
systemsΣ1, . . . , Σk approximately asymptotically syn-
chronized w.r.t. to the functionalsg1, . . . , gℓ if for some
sufficiently smallε > 0:

|gj(στ1
y1(·), . . . , στk

yk(·), t)| 6 ε ∀ j = 1, 2, . . . , ℓ

(3.2)



is valid for t → ∞ and someστi
∈ T.

In the sequel definition 3.1 and 3.2 will be used to de-
fine (approximate) synchronization.

4 Example 1: Coupled Duffing Oscillators
In this section experimental results with respect to two

synchronizing Duffing oscillators are presented. Af-
ter introducing the dynamical system an analysis of the
limiting behaviour of the system is presented. Finally,
both numeric and experimental results are presented
and discussed.

4.1 Problem Statement & Analysis

x1 x2x3

κd κd

k

b m m

M

Figure 3. Schematic representation of the set-up modeling two cou-

pled Duffing oscillators.

Consider the system as depicted in figure 3, where:,

κd(qi)

m
= ω2

0qi + ϑq3
i (4.1)

whereqi = xi − x3 and constantsω0, ϑ ∈ R>0.
The system under consideration represents two un-

driven, undamped Duffing oscillators coupled through
a third common mass. The set-up depicted in figure 2
can be adjusted to model this system by defining the
actuator forces as:

Fi = κi(qi) + βi(q̇i) − κd(qi), i = 1, 2 (4.2)

F3 = 0 (4.3)

WhereF3 = 0 is chosen because, in the original set-up,
the beam already models the situation as depicted in
figure 3 (linear stiffness and damping) fairly accurate.
The equations of motion of the resulting system are:

mẍ1 = −κd(x1 − x3) (4.4)

mẍ2 = −κd(x2 − x3) (4.5)

Mẍ3 = κd(x1 − x3) + κd(x2 − x3) (4.6)

− kx3 − bẋ3,

wherek, b ∈ R>0 are the stiffness and damping coeffi-
cients of the beam.

Before continuing with the experimental and nu-
merical results the systems’ limiting behaviour is
analyzed. In order to do so the notion of anti-phase
synchronization needs to be defined:

Definition 4.1:((Approximate) Anti-phase Synchroniza-
tion).
Consider two systemsΣ1 andΣ2 with initial conditions
x10 andx20 and corresponding solutionsx1(x10, t) and
x2(x20, t). Furthermore, assume that bothx1(x10, t)
andx2(x20, t) are periodic in time with period T. We
call the solutions ofx1(x10, t) andx2(x20, t) (approx-
imately) asymptotically synchronized inanti-phaseif
they are (approximately) asymptotically synchronized
according to definition 3.1 or 3.2, with:

g(·) = x1(·) − ασ( T

2
)x2(·), (4.7)

with α ∈ R>0 a scale factor andσ( T

2
) a shift operator

over half an oscillation period.

Using definition 4.1 it can been shown that the
dynamics of the oscillators in (4.4) - (4.6) converges to
anti-phase synchronization ast → ∞ (see Lemma 4.1
below).

Lemma 4.1: (Global Asymptotic Stability of the
Synchronization Manifold).
Consider the system of nonlinear differential equations
(4.4) - (4.6). The trajectories of the oscillatorsΣ1 and
Σ2 will converge to anti-phase synchronized dynamics,
according to definition 4.1 ast → ∞ for all initial
conditions.

Proof (of Lemma 4.1).
Consider the system (4.4) - (4.6). To analyze the limit
behaviour of this system, the total energy is proposed
as a candidate Lyapunov function:

V =
1

2

3
∑

i=1

miẋ
2
i +

3
∑

i=1

ξi
∫

0

κi(s) ds, (4.8)

wherem1 = m2 = m, m3 = M , ξi = xi − x3, i =
1, 2, ξ3 = x3, κi(qi) = κd(qi) andκ3 = kx3. Cal-
culating the time derivative ofV along the solutions of
the system (4.4) - (4.6) yields:

V̇ = −bẋ2
3. (4.9)

Hence, we findV̇ ≤ 0 and the system may be analyzed
using LaSalle’s invariance principle.
Equation (4.9) implies thatV is a bounded function of

time. Moreover,xi(t) is a bounded function of time
and will converge to a limit set wherėV = 0. On this
limit set ẋ3 = ẍ3 = 0, according to (4.9). Substitut-
ing this in system (4.4) - (4.6) yieldsx3 = 0 on the



systems’ limit set. Substitutingx3 = ẋ3 = ẍ3 = 0 in
(4.6) shows:

κd(x1) = −κd(x2) (4.10)

Sinceκd is a one-to-one, odd function, this implies:

x1 = −x2 (4.11)

Finally, substitutingx1 = −x2 in (4.4) - (4.5) yields:

ẋ2 = −ẋ1. (4.12)

Summarizing, it has been shown that any solution of
(4.4) - (4.6) will converge to anti-phase synchronized
motion according to definition 4.1 ast → ∞. �

The next paragraph will present numerical and experi-
mental results that support the analysis provided in this
section.

4.2 Experimental & Numerical Results
In order to experimentally investigate the synchroniz-

ing behaviour of two coupled Duffing oscillators the
set-up has been modified as specified in the previous
paragraph. The oscillators are released from an ini-
tial displacement of−3 mm and−2.5 mm respec-
tively (approximately in phase) and allowed to oscillate
freely.
Figure 4 shows the sum of the positions of the oscil-

lators and the position of the beam v.s. time. As be-
comes clear from figure 4, approximate anti-phase syn-
chronization occurs within40 s. Furthermore, figure
5 shows the limiting behaviour of both oscillators and
the beam. Although the amplitudes of the oscillators
differ significantly, the steady state phase difference is
1.01π. The most probable cause for the amplitude dif-
ference is the fact that the oscillators are not exactly
identical. As a result, the beam does not come to a
complete standstill, although it oscillates with an am-
plitude that is roughly ten times smaller than that of the
oscillators.
In addition to the experimental results, numerical re-

sults are provided in figure 6 and 7. The parameters in
the simulation are chosen as shown in table 2.

Table 2. Parameters in numerical simulation.

ωo = 15.26 ϑ = 8.14 M = 0.8

m = 1 k = 1 b = 5

The results presented in figure 6 and 7 correspond to
the experimental results provided in 4 and 5 respec-
tively. Although the oscillation frequencies of the os-
cillators are almost equal (within 5%) in the simulation
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Figure 4. Experimental results: (top) Sum of the displacements of

both oscillators. (bottom) Displacement of the connectingbeam.
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Figure 5. Experimental results: Steady state behaviour of the sys-

tem. (top) Displacement of the oscillators (- x1, - x2). (bottom)

Displacement of the connecting beam.

and the experiment, the final amplitudes of the oscilla-
tors differs by a factor 15. This is due to the fact that
in the experiment the damping is over compensated,
resulting in larger amplitudes of the oscillators. This
presents no problem since the residual energy may dis-
sipate through the motion of the beam, which does not
come to a complete standstill due to the amplitude dif-
ference between the oscillators. In the numerical sim-
ulation almost exact anti-phase synchronization with
equal oscillator amplitudes is achieved and this mecha-
nism fails.

Finally, note that some of the differences between the
experimental and simulation results may be coped with
by tuning either the parameters of the numerical sim-
ulation or those of the set-up itself.The question of
identifying a model can thus be reversed to tuning the
parameters of the set-up rather than those of the model.



0 5 10 15 20 25 30 35 40 45
0

5

10

15

0 5 10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

|x
1

+
x

2
|
[m

m
]

x
3

[m
m

]

t [s]
Figure 6. Numerical results: (top) Sum of the displacementsof both

oscillators. (bottom) Displacement of the connecting beam.
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Figure 7. Numerical results: Steady state behaviour of the system.

(top) Displacement of the oscillators (- x1, - x2). (bottom) Dis-

placement of the connecting beam.

5 Example 2: Two Coupled Rotary Elements

Next to the synchronization of Duffing oscillators we
investigated synchronization in a system of coupled ro-
tating disc as depicted in figure 8. First the dynamics
of the system will be specified in more detail and next
experimental results will be presented.

5.1 Problem Statement

Consider the system as depicted in figure 8. This sys-
tem consists of three discs. Discs 1, 2 represent the
oscillators and disc 3 is connected to both other discs
by torsion springs with stiffnessk. Each of the discs
has an eccentric mass at a distanceℓi from it’s center
(ℓ1 = ℓ2 = ℓ). Furthermore the middle disc is coupled
to the world by a torsion spring with stiffnessk3 and
a torsion damper with constantb. The rotation of the
discs is represented w.r.t. the world by the anglesθi.

θ1 θ2

θ3

ℓ ℓ
ℓ3

mm

M

k k

k3

b

1 2 3

~g

Figure 8. Schematic representation of the set-up modeling two cou-

pled rotating elements.

The equations of motion of the system depicted in fig-
ure 8 are:

θ̈i = −ϑi (k (θi − θ3) + δi sin θi) , i = 1, 2 (5.1)

θ̈3 = ϑ3

(

2
∑

j=1

k (θj − θ3) (5.2)

−k3θ3 − b3θ̇3 − δ3 sin θ3

)

,

with ϑi = 1

mℓ2
i
+Ji

andδi = migℓi. The modification
to the set-up is now more involved than in the previ-
ous example. First of all, the translation coordinatesxi

should be mapped to rotation anglesθi (arbitrary map-
ping). Secondly, in case of the Duffing oscillator the
actuation forcesF1 andF2 were meant to act on both
the oscillators and the connecting mass. In the situa-
tion depicted in figure 8 the actuation force generated
to model the coupling between the oscillator discs and
the middle disc by means of the torsion spring should
again act on the oscillators and the connecting beam
in our set-up. However, the part of the actuation force
that models the influence of gravity on the oscillators
should only act on the oscillators and not on the con-
necting beam, since in figure 8 the gravity on discs 1
and 2 exerts a force only on the corresponding disc and
not directly on the middle mass.
In order to adjust the set-up in figure 2 to model the

system in figure 8 the actuator forces are defined as:

Fi = κi(qi) + βi(q̇i) − ϑi (ηi + gi) , i = 1, 2 (5.3)

F3 = κ3(x3) − ϑ3 (η3 + g3) − g̃(·), (5.4)

with κi(qi) and βi(q̇i) as defined earlier,ηi =

k (θi − θ3) , i = 1, 2, gi = δi sin θi andg̃ =
2
∑

j=1

ϑigi.

Damping is left to be the natural damping of the beam



in the set-up. Furthermore, translation is mapped to ro-
tation angles according to:θi = π

2

xi

x⋆

i

, with x⋆
i is the

maximal displacement of the oscillators and the beam,
assuring± 90◦ turns in the rotation space.

5.2 Experimental Results
Experimental results, are presented in figure 9 and 10.

It becomes clear that approximate anti-phase synchro-
nization occurs after about 20 s. Again complete syn-
chronization does not occur because the oscillators are
not identical. In addition figure 10 shows the steady
state behaviour of the rotating system, from which
the approximate anti-phase synchronized behaviour be-
comes clear immediately.

6 Conclusion & Future Research
We presented a set-up capable of conducting synchro-

nization experiments with a variety of different oscil-
lators. Two sets of experimental results were provided
that show the potential of this set-up. First we modeled
and experimentally obtained synchronization between
two coupled Duffing oscillators. Second, we showed
that it is possible to model systems with rotating dy-
namics and to effectively model the local influence of
gravity in this case.
In addition to studying uncontrolled synchronization

the set-up has the potential to study controlled synchro-
nization. Furthermore, we aim to model the Huygens
set-up and perform controlled and uncontrolled syn-
chronization experiments with this type of dynamical
system.
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