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Abstract. In this paper the problem of a self-teaching process of pattern
recognition is treated as the reconstruction by an automaton of a certain a priori
classification of the input obfects. These are regarded as a sequence of points in
Euclidean n-space forming a sample in an n-dimensional universe with an unknown
continuous density distribution m(x). Two algorithms are described which yield
classifications of the sample arbitrarily close to the a priori one, with probability
tending to 1 as the size of the sample grows indefinitely. In the second algorithm
only part of the input sample is correctly indexed, but the length of the correctly
indexed part is Proportional to the size of the sample. The results of computer
experiments with both algorithms are described.

Bibliography: 6 titles.

One of the urgent problems of engineering cybernetics is the analysis and
synthesis of recognition systems. Recognition systems are automata that divide
the set of input events into several subsets, called classes, i.e. that classify input
events. Of particular interest is the synthesis of learning and self-learning systems,
in which all the information necessary to design a decision rule is derived by
selecting from the set of input events a so-called learning sequence. Here a self-
learning system is understood to mean a system without any information about
the distribution of the images among the classes. The system itself must
determine whether the images of a learning sequence belong to some class
or another, and must index the learning sequence.

Let us consider two possible approaches to the design of a self-learning
system. Suppose that images (objects), each of which is specified by an ordered
set of n numerals, are fed to the input of the system. Each image will be
regarded as a point of the Euclidean space R”. A learning sequence can then
be considered as a sample from an n-dimensional universe with a certain distribu-
tion density m(x). The number of classification classes is assumed to be given.
The design of a self-learning system (self-learning algorithm) can be stated
naturally as the task of creating an algorithm that generates a “good” indexing
of the learning sequence. However, the problem remains meaningless until the
term “‘good’” is made precise.
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One possible refinement is to introduce some classification quality criterion.
Then the task becomes that of constructing an algorithm of searching for a
classification that is optimal in the sense of this criterion. Since a classification
can usually be specified by a set of separating functions (hypersurfaces in the
image space), the problem reduces to the design of algorithms for the numerical
solution of a variational problem. Such an approach has been developed in [1]—
[4]. A typical example of a quality functional is the ratio of the mean-square
distance between points of different classes to the mean-square distance between
points of the same class [3]. Extremalization of this and other similar criteria
makes it possible to obtain classifications in which the classes are fairly “compact”
and “distant” sets. The choice of a criterion is to a certain extent arbitrary and
is dictated by considerations of naturalness and convenience for numerical
extremalization.

A second approach, which is developed, in particular, in the present paper,
is to define as “good” a classification close (in some sense) to a previously given
classification which is not known a priori to the computer. The problem can
then be stated as the design of an algorithm that reconstructs this a priori
classification. If the form of the a priori classification is arbitrary, the task of
reconstructing it is meaningless. An a priori classification must therefore satisfy
certain conditions.

It is of interest to solve the problem under the weakest possible constraints
on the form of the a priori classification and the function m(x). Suppose the
classes 4, ..., A, of the a priori classification are disjoint bounded open
connected sets in R".

We now describe the following self-learning algorithm (Algorithm 1).

DEFINITION 1. We specify a number R > 0. A set M of points in
Euclidean space is said to be R-connected if for every pair of points in M there
exists a polygonal line connecting them, with vertices at points in M, such that
the length of each link is at most R.

DEFINITION 2. Suppose M C R"™ and x € M. The greatest R-connected
subset of M containing the point x is called the R-connected component of x.

ALGORITHM 1. Let x,,...,x, be a learning sequence (x; € R"), and
let R > 0. We construct the R-connected component of x,. Then we take an
arbitrary point from the learning sequence outside this component, say Xiy- We
construct the R-connected component of x; , and continue until the entire
learning sequence has been exhausted. At each step we construct the R-connected
component of a point that does not occur in any previously constructed com-
ponent.

It can be easily proved that as a result a learning sequence splits into
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In actual problems, however, m(x) by no means always satisfies Conditions
1 and 2. It usually does not satisfy Condition 2, i.e. “‘noise points blurring the
interval between classes occur with nonzero probability. It is necessary to
perfect the algorithm in such a way that it could index the learning sequence
correctly under weaker constraints on the form of m(x).

Let us make these remarks more precise. Suppose that a density function
n(x) and k disjoint bounded connected and open sets A, ... ,4;, 4 =
Uj4;, are defined in R". Let n(x) >0 for x €A. We set

g Haa

ConpITiON 3. 7(x) > « for any point x € 4.

Condition 3 expresses the natural requirement that the probability density
for noise points to appear must not be too large; namely, that it is less than the
probability density for points to belong to classes. The constraints imposed on
the form of m(x) by Condition 3 are weaker than the constraints imposed by
Condition 2.

We now introduce some notation. By P(M) we denote the probability that a
point belongs to some measurable set M. Then

P(M)=J = (x) dx. )

By S (x) we denote an n-dimensional ball of radius R with center at x, by Vg
its volume.

DEFINITION 3. The function mg(x) defined for every point x € R"(x) by

g (x) =) @

is called the R-density function. The R-density at x is the mean value of the
density m(x) in Sz (x).

Note the following properties of 7 (x):

1) infyesR ) S 1R () S supyes, (x)"0’)§

2) 1p() < 1/Vg;

3) limg_, omg(x) = m(x) if m(x) is continuous;

4) mp(x) is continuous for any R if n(x) is bounded.

Thus, for small R, m,(x) can be regarded as a bound on the continuous density
function m(x).

Suppose that from the universe a sample of size NV is selected with density
function m(x). We let d, denote the number of points of the sample occurring
in Sy (x;), divided by the sample size. The number d; is a bound for the
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quantity
PIAI,i‘m dy=mp(x;) VR}=1. 3)

Let us also introduce the notation

MR(¢)=[X:“R(X)<‘1): (C)]
C(R, a) =P (My(a)). ©)

We now describe

ALGORITHM 2. A radius R > 0 and threshold a > 0 are fixed. Points X;i
with d; < aV are eliminated from the learning sequence. Algorithm 1 is then
applied to the remaining points.

The use of Algorithm 2 is justified by the following theorem.

THEOREM. 1. For any positive numbers R, « and €, the probability that
“Algorithm 2 eliminates at most (C(R, @) + €)N points from the learning
sequence” tends to 1 as N —> oo,

2. For any e > 0 there exist positive numbers R and o such that for
all positive R < R, the probability that N,INy >1~¢€tends to1as N— oo,
Here N, is the number of points of the learning sequence left after the elimination
and N, is the number of correctly indexed points.

The meaning of the theorem is that Algorithm 2 eliminates at most cN
points, 0 < ¢ < 1, from the learning sequence and indexes the remaining points
in such a way that the probability for the correctly indexed fraction of the
sequence to be greater than 1/(1 — €) for any € > 0 tends to 1 asn — oo,
PROOF. By (3), the points eliminated by Algorithm 2 form a sample from
the set Mp (@) with probability tending to 1 as N —> . If there are / such points,
then

1
Mm 7 =P (My(@) =C(R, a) ©
with probability 1. Consequently, for any € > 0 the probability for
CR, ) —e< 4 <C(R, o)+ @)

tends to 1 as IV —> oo, which proves the first assertion of the theorem.

We introduce some more notation. Let M be a subset of R”. We denote
by M, the set of points in R" whose distance from points in M is at most R;
by M_ the set of points in M at a distance at least R from the boundary of
M; and by Mg (@) the set of points at which the R-density is greater than a:
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M, = (x:p(x, M)< R}, ®)
M_p={x:p(x, R*\\ M) >R)j, ©)
My(a)= (x :my(x) > a). (10)

If Condition 3 is satisfied, then, for any R > 0,

A_RCMR(aO)CA+R. (11)

We claim that for any € > 0 there is an R > 0 such that

the classes (A;), , satisfy Condition 1; 12)
P((A)_g) >0, 1<i<k; (13)
P(A, g\A_p<e (14)

Now (12) is true if R is chosen less than §/2. where & is the least distance
between the classes, in accordance with Condition 1;and for (13) to hold it is
sufficient that the sets (4,)_, are nonempty and contain interior points, and
this is true for sufficiently small R, since the A; are open sets. For small R (14)
is also satisfied, since P(4, xg\A4 _p) —> 0 as R — 0 (we assume that (x) is
bounded). We select a value for R satisfying (12)—(14) and set Yo = P(Mp (o))
> 0, where «, is the number in Condition 3. .

We now apply Algorithm 1 to the points of the learning sequence for which
d; > ayVy. As was proved above, these points constitute a sample from
Mg (o) with probability tending to 1 as N —> oo, If there are / such points in
the sample, then I/N — Yo- It is clear from (11) that the set M r(@) splits into
k disjoint subsets:

R
M= M, whle (A)_,C M,C (A), .
i=1
The sets M; satisfy Conditions 1 and 2. Consequently, Algorithm 1 divides the
chosen points into k groups with probability tending to 1 as N —> oo, where the
ith group is a sample from M; (also with probability tending to 1 as N —> o).
The set M r(@p) does not, in general, coincide with 4, and the algorithm
incorrectly indexes points in M R (o) that do not belong to 4. However, points
in A_p are correctly indexed. The probability that a point has been incorrectly
indexed can be made arbitrarily small by the choice of €.
Since

P(Mp(a) \NA_g) <P (A, o \A_p) <,

at least (v, — €)NV points will be correctly indexed with probability tending to
1 as N —eo. But v, = 1 = C(R, o), and we may conclude from (7) that the
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probability for
N; —¢
> uT
to hold tends to 1 as N — oo, for any € > 0, which proves the theorem.
REMARK 1. Since Conditions 1 and 3 are together weaker than
Conditions 1 and 2, the statement of the theorem is also weaker: correct index-
ing is ensured not of the entire learning sequence, but only of part of it. The
length of the correctly indexed segment is the greater, the lesser is the probability
density of noise points to appear.
REMARK 2. The set of classifications of a universe with density function
7(x) can naturally be made into a metric space by defining the distance between
two classifications as the probability of the set of points by which they differ:

k
o= P(44B), as)
i=1

where B; are the classes of the second classification.

To make the distance so defined independent of the order in which the
classes are numbered, we take the least p for all possible methods of numbering.
The theorem can then be stated in the following way: Suppose the a priori
classification satisfies Conditions 1 and 3 and a sample of size N enters the
input. Algorithm 2 then selects from it a subsequence and indexes it in such a
way that it gives rise to a classification arbitrarily close to the a priori classifica-
tion with probability tending to 1 as N —> o°.

The application of Algorithm 2 is illustrated by the following experiment.
A learning sequence consists of 74 images (the results of measuring the species
Ch. concina, Ch. heikertingeri, and Ch. heptapotamica of flea beetles [6]).
There are k = 3 classes. When R = 13.0, ten points with d; < 2 are eliminated
from the sequence. Algorithm 1 is applied to the remaining points and for this
value of R splits the remaining learning sequence into three R-connected groups.
All the points of each group belong to the same species, i.e. the indexing is
correct.

Experiments have demonstrated that the range of R over which estimates
of R-density were calculated and a fairly small variation of the threshold «,
affect the result of the algorithm only insignificantly.

The author wishes to express his appreciation to V. I. RuZanskif and
V. A. Jakubovi¢ for a number of valuable remarks and for their interest in the
work.
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