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Most of microfluidic devices operate in laminar conditions, and in many cases in the
creeping (Stokes) regime. Notwithstanding the relative simplicity of hydrodynamics at
microscales (compared to the wealth of problems associated with the occurrence of tur-
bulence in bench-scale and ordinary-scale fluidic systems), there are many open issues in
microfluidic theory, the understanding of which has a direct impact on the device design
and optimization.

Among these open problems, a crucial issue is the influence of walls on transport and
dispersion of solutes and reacting species, and the scope of this presentation is to review
some of the most relevant theoretical approaches developed for understanding transport,
dispersion and related phenomena in microsystems.

Just because of the strong connection with the realization of microflow devices, the
hydrodynamic and transport modelling in microfluidics involves mainly finite and bounded
flow/mixing domains V , characterized by the presence of impermeable walls to solute
transport and, in the case of open (inflow/outflow) systems, by the presence of an inlet and
an outlet section (e.g., in open capillary microdevices, microchromatographic equipment,
static micromixers, tubular microreactors).

Throughout this presentation we consider almost exclusively inflow/outflow systems,
in the presence of a liquid incompressible stationary flow.

Consider a generic inflow/outflow device, as represented in Fig. 1, possessing a single
inlet and a single outlet section, denoted as Sin and Sout, respectively. Let Sw represent
the solid boundaries (walls) of the device. Within the control volume, a laminar vel-
ocity field is defined, which can be generated by different driving forces, such as pressure
drops, electro-osmosis, magnetohydrodynamic effects. Typically, the flow is either known
analytically, when the device possesses a simple structure (e.g. channel or annular flows),
or obtained through CFD simulations, in the case of more complex geometries. In most
cases of practical interest, it is possible to identify an average streamwise direction of the
flow, which we denote as z, with 0 ≤ z ≤ Lz, Lz being the overall length of the device.
Accordingly, a generic cross-section of the device, (denoted as Sz) orthogonal to the z
axis is also defined for any z. The volume delimited by the inlet section Sin, the generic
section Sz, and the device walls, is henceforth referred to as Vz. It is worth noting, that in
many applications, the geometric structure of Sz is position-dependent and can be made



of a union of disjoint domains. Henceforth, we denote with x = x⊥ + z ez a generic point
of the control volume, where the subscript “⊥” indicates the cross-sectional coordinates
obtained by the projection of x onto the generic cross-section at z, and where ez is a
unit vector along the z-axis. Single phase mixing is described by the advection-diffusion
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Figure 1: Schematic representation of the inflow-outflow device

equation
∂φ

∂t
= L

v,P e[φ] = −v(x) · ∇φ +
1

Pe
∇2φ (1)

where φ(x, t) is the concentration of the species being mixed, v(x) is an incompressible flow
which we assume time-independent, and the Peclet number Pe = τD/τc is a dimensionless
number representing the ratio between a characteristic time for diffusion to a characteristic
time for convection. Equation (1) is equipped with the boundary and initial conditions

φ(x, t) = φin(x, t) on Sin (2)

∇φ · n = 0 on Sw ∪ Sout (3)

φ(x, 0) = φ0(x) x ∈ V (4)

which assign a prescribed concentration profile at the inlet, zero diffusive flux at the
system walls and at the outlet section, and a given initial profile within the control
volume, respectively.

Essentially, three different classes of transport problems can be formulated in open
flow systems involving a single fluid phase:

• transient phenomena within the flow domain V ;

• relaxation dynamics towards stationary conditions in the case where the inlet con-
dition is maintained steady;

• the stationary response of the flow device.

In all of these classes, the structure of the velocity field near the walls, and the inter-
action between advection and diffusion near the stagnation points at the solid walls play
a major qualitative role in the dynamical and stationary response of the system.



Transient phenomena: dispersion in finite-length microchannels

The typical phenomenology involving transient phenomena in finite-length channels is re-
lated to solute dispersion. Dispersion phenomena in microchannels and microflow devices
control the performance of many hydrodynamical and chemical processes in micro-Total
Analysis and Lab-on-Chip Systems, chemical reactions, microseparations, microchromato-
graphic measurements.

The recent Literature on fluid dispersion in microchannels has been mainly focused on
the analysis and prediction of the Taylor-Aris dispersion coefficient, and on the influence
of geometric parameters and of cross-sectional flow in the Taylor-Aris [1] dispersion regime
[2-4]. In point of fact, Taylor-Aris theory applies to infinitely extended channels, and is
not suited for predicting finite-size effects occurring in a microcapillary of finite length,
occurring for very high Peclet number.

In this presentation we show that:

1. Whenever a finite length microcapillary is considered, a regime transition occurs
for from the classical Taylor-Aris regime to a new regime referred to as convection-

dominated transport regime, occurring for Peeff = Pe/α2 > 5, where Pe = VrefLz/D,
α = Lz/W (Vref being the characteristic mean axial velocity, D the solute diffusion
coefficient, and W the characteristic cross-sectional lengthscale).

2. For parallel flows in microchannels, the average moments m(n), n = 1, 2, . . . of the
outlet concentration profile,

m(n) =
1

meas(Sout)

∫
Sout

tn φ(t,x)|z=Lz
dS , n = 1, 2, . . . (5)

(associated with a cross-sectionally uniform impulsive inlet condition) scale as a
power-law of the effective Peclet number Peeff

m(n) ∼ Pe
ζ(n)
eff , P eeff → ∞ (6)

where ζ(1) ≥ 0, and ζ(n) > 0 for n > 1, The exponents ζ(n) depend on the lo-
cal behavior of the velocity field at the solid walls, on the dimensionality of the
flow domain (i.e. whether two-dimensional or three-dimensional domains are con-
sidered), and on the possible lack of Lipschitz-continuity of the channel boundary.
For instance, Fig. 2 shows the cross-section and the contour plot of a cross-sectional
boundary which is not Lipshitz continuous. For a cylindrical capillary one obtains
ζ(1) = 0, ζ(2) = 1/3, for a rectangular duct ζ(1) = 0, ζ(2) = 1/2, while a channel
with the cross-section depicted in Fig. 2 ζ(1) = 1/6, ζ(2) = 5/6. In this case, the
lack of Lipschitz continuity enhances dispersion.

The case where ζ(1) = 0, should be understood as the fact that the first-order
moment displays a logarithimic divergence with Peeff ,

m(1) ∼ C log(Peeff) , P eeff → ∞ (7)



Figure 2: Contour plot of the axial velocity, solution of the Stokes equation, for a cusp channel

the boundary of which is not Lipschitz continuous.

where C is a constant. We provide the result of a scaling theory for predicting the
behavior of ζ(n), supported by simulation results.

3. Hydrodynamic chromatographic microchannels for relatively small aspect ratios
(corresponding to the analytical application referred to as wide-bore chromatog-
raphy [5]) can be used as a transport-based experimental set-up for determining the
possible occurrence of slip velocity conditions at the channel solid walls, directly
from the analysis of the dispersion properties of the outlet chromatograms.

Relaxation phenomena

Relaxation phenomena towards the stationary response of a microflow device has been
addressed in [6], by considering the Frobenius eigenvalue of the advection-diffusion oper-
ator L

v,P e associated with simple parallel flows. In inflow-outflow systems, the Frobenius
eigenvalue is tipically different from zero and quantifies the timescale to reach the steady-
state profile which is not, in general a perfectly mixed state. Therefore, the Frobenius
eigenvalue does not quantify mixing efficiency, but rather provides a preliminary necessary
requirement to motivate the analysis of mixing efficiency at steady-state, meaning that
an excessively long timescale would suggest that a steady-state assessment of mixing effi-
ciency might be inadequate, and that the whole transient behavior should be considered
instead.



Stationary response of a microfluidic system

The stationary response of a fluidic system is related to several different applications of
microflow devices. In particular:

1. the formation of mixing layers when two fluid streams homogenize in a microchannel
channels (e.g. in a T-microjuntion) [7-8].

2. the homogenization properties of micromixers (static micromixers) operating under
steady conditions.

By focusing attention on the second of these issues, we discuss the spectral characterization
of mixing in simple microflow systems, and how, localization theory of the eigenfunctions
of the advection-diffusion operator may unveil the occurrence of different mixing regimes,
and the behavior of the homogenization exponents as a function of the Peclet number
[9-10]. Examples of magnetohydrodynamic micromixers are also addressed and reviewed
[11].
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