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Abstract 
Highspeed vertical rotors can have a rotating 

mass above or beneath the shaft support point 
[Kushul, 1968; Kushul, Zeitman, 1968; 
Zeitman, 1991]. Those of stipulate some 
constructional peculiarities: the highly flexible 
shaft and the massive rotor with the strong 
gyroscopic properties and vertical rotation axis 
at the availability resilient supports. It is 
proposed a new untraditional dynamic model 
which enables the adequate analytical 
description of the considered systems. Those of 
can be excited by the rotor unbalance and also 
by the support point vibrations. It is 
investigated the nonlinear oscillations for the 
system with rotor above the support point as 
well as a problem of the vertical rotation 
stability. It is also noted a variation of the 
vertical spinning stability threshold for the 
rotor system under investigation. 
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Introduction 
Highspeed vertical rotor systems belong 

because of their particularities to such 
structures which we consider to call as the 
elastic gyroscopic system. Those of vibrations 
can be not always described within the 
traditional assumptions. It is therefore proposed 
a dynamic model where the rotor accomplishes 
the motion as a flexible normal or inverted 
gyropendulum [Zeitman, 1991]. Such system is 
undergone in this case besides general loads 
due to shaft and bearing deflections the action 
of inertial forces and couples resulting from 
new rotor motion form. It is taken into account 
a shaft buckling by the axial loads with the 
variable direction  depending on the mode of a 
flexural curve [Zeitman, Kushul, 1968]. 

Nonlinear differential equations of the rotor 
motion are attained. Versatiles vibrations in 
particular from an unbalance of the rotor under 
discussion are studied. The considered rotors 
can be with the different constructional 
composition when the rotor mass centres are 
respectively placed above or beneath a support 
point. We shall here the former case study. 
Therefore arises then a vertical rotation 
stability problem [Kushul, 1968; Zeitman, 
Kushul, 1968; Zeitman, 1991; Volokhovskaya, 
Zeitman, 1992]. It is shown a decrease of the 
vertical spinning stability threshold by taking 
into account the shaft flexibility for the 
assumed dynamic model. 

On the Fig.1 is presented the investigated 
dynamic model of the rotor system under study.   

 
Figure1.  The dynamic model 

 
A solid symmetric rotor is fastened on a 
flexible massless thin shaft. A rotor symmetry 
axis coincides with a rotation one. The shaft 



support point 0O  is resiliently strengthened in 
the direction of the fixed axes coordinates 
system O xyz. The coordinate axes x0, y0, z0 
origin is set in the support point 0O , those of 
translationaly moving relatively to the 
unmovable axes x, y, z. The rotor mass centre 

1O is disposed above the shaft support point 

0O . It is supposed that one moves on the sphere 
with the centre in 0O  and its position is defined 
by spherical coordinates γ, θ concerning the 
movable axes x0, y0, z0. The same angles 
determine a space position of the spherical 
coordinates system 1O x1y1z1 characterizing a 
rotor orientation with an undeformed shaft. A 
shaft bending brings about an additional turn of 
the rotor symmetry axis 1O z2 coinciding with 
the tangent to a flexural shaft curve in the 
fixation point of the rotor and shaft (s=l0). The 
transverse shaft deflections are read off the 
straight line 0O 1O  (axis 1O z1) in the spherical 
coordinates system 1O x1y1z1. The Rezale’s 
axes system x2y2z2 is invariably bound up with 
the rotor symmetry axis. A position of the latter 
is defined by the Rezale’s  angles α, β in 
relation to the spherical system 1O x1y1z1. The 
axes x’2 y’2 z’2 rotation connected rigidly with 
the rotor in regard to system 1O x2y2z2 is 
determined by a proper rotation angle φ. 

The flexible shaft is acted by restoring couple 
in 0O  simulating the elastic properties of the 
support device – a thrustbearing. That of affects 
of the same point by the viscous damping 
reaction forces depending linearly or 
nonlinearly on the respective velocity 
components. 

After these preliminary remarks as well as the 
short description of the dynamic model in the 
frames of reference can we now record the 
rotor motion differential equations. Applying 
the kinetostatic method in the main theorems of 
the relative motion dynamics it can be derived 
the following equations 
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where 0ξ , 0η , 0ζ  - dimensionless displacement 
coordinates of the support point relative to 
unmovable system O xyz; ε - dimensionless 
rotor unbalance; aij(i=1,…8; j=1,…7) – 
dimensionless constant equations coefficients 
depending on the elastic, inertial, geometric 
and damping rotor system properties; 
Fi(i=1,…7) – dimensionless complicated 
nonlinear functions of the coordinates and their 
derivatives with constant and periodical 
coefficients. Differentiation with respect to 
dimensionless time lgt /=τ  is here 
designated by points above the letters. 

Nonlinear equation (1) describes completely 
the assumed rotor dynamic model motion as 
the inverted gyropendulum with the flexible 
shaft, elastic connections and movable support 
point. Let us consider the more simple variety 
of the dynamic model under study – 
stationarily spinning rotor with the fixed 
support point and free from external resilient 
connections except an elastic restoring 
momentum in a flexible shaft [Kushul, 1968]. 
It is at first examined the rotor oscillations by 
the linearized system (1), when nonlinear 
functions Fi=0(i=1,…7). This step gives the 
generating one. Introducing the complexes 
functions of the angle coordinates 
       x= β +iα , y=θ +iγ , i= 1−  



from the system (1) it can be obtained the 
motion differential equations for the case under 
discussion in complexes variables 
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where dimensionless coefficients aij are taken 
from (1) for the considered occasion and 
ω*=ω gl / . Those of are the transcendental 
and algebraic functions of the elastic and 
inertial rotor parameters. Assuming in the right 
part of (2) ε=0 it is obtained the model with the 
ideally balanced rotor and the equations system 
(2) becomes uniform. It can be got from that of 
a frequency equation for the calculation the 
whirling angle velocities at the rotor transverse 
oscillations  
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Here coefficients ai(i=0,…4) are dimensionless 
transcendental functions of the elastic and 
inertial rotor system parameters; ν* - are 
dimensionless whirling angular velocities 
which it can be calculated as the roots of 
equation (3). The general solution of the 
equations system (2) can be found for complex 
form as  
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where )4,...1(/* == kglkk νν  are the roots of 
(3), qk are the coefficients of the vibration 
forms defining from (2). The amplitudes Rk and 
phases ψk are expressed from (2) through the 
initial angles and angular rapidities values. 

The equalities (4) enable construct the 
trajectories of the arbitrary rotor point in the 
projection on the horizontal plane. Those of 
permit to estimate the rotor displacement 
quantities at the free vibrations with the 
different initial conditions. It should be noticed 
that these trajectories are visibly differed from 
ones constructed on the base of traditional 
dynamic model. 

The considered gyroscopic rotor vibrations 
from the unbalance are described from 
nonuniform equations system (2). The 
amplitudes stationary values can be obtained 
applying in (2) a substitution 
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Here *4
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**01 aaa ++=Δ ωω  in doing so a0*, 

a2*, a4* are known functions of the elastic and 
inertial rotor system parameters but ai*(i=0,2,4) 
are drawn from (2). 

Let us discuss the simplest rotor system 
version when l=l0 and χ=0 (χ – nondimensional 
angular stiffness of the restoring momentum in 
the thrust bearing). The polynomial Δ1(ω*) in 
expression (5) is under these conditions equal  
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where 2
0σ , 2σ  - nondimensional polar and 

equatorial inertial momenta respectively; 
f=ϑ ctgϑ , ϑ =λ0l – nondimensional flexibility 
at the shaft buckling; λ0=mg/EI, mg – the rotor 
weight; EI – the flexural shaft stiffness. 

The bequadratic equation =Δ )( *1 ω 0 derived 
from (6) has no real roots, i.e. critical speeds, if 
its discriminant is positive, that is 
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The modern vertical gyroscopic rotors 
parameters are such that the difference 

22
0 σσ − >0 for all practically important cases. 

The indicated difference numerical value lies in 
the range 0,01–0,07, i.e. 22

0 σσ − «1. The 
condition (7) performance is merely by virtue 
of possible in the highly confined domain in so 
far in the most of the parameter ϑ  real value 
interval exists an unquality )( 1ΔD <0. This 
means that the rotor is not free from critical 
speeds. There is nevertheless for the suggested 
dynamic model an area sufficiently narrow 
where )( 1ΔD >0 and consequently the rotor 
system under consideration has no resonance 
states. The surprising thing is that this occures 
when it had regard to the springiness of the 
rotor system suspension every element. The 
mentioned phenomenon takes place when 



f< 12
0

2 )( −−σσ  or with allowance for the sited 
numerical data 0,95π<ϑ <0,995π. It should be 
noted that the values ϑ  for the many vertical 
rotors under operation fall into this band. If 

2
0σ < 2σ  this area vanishs. A familiar fact 

occures in the resonance existence domain 
when at 2

0σ > 2σ  is there one critical speed and 
if 2

0σ < 2σ  are there two those of. 
The absolutely rigid shaft has ϑ =0, f=1 and 

from (6) the equation for the critical speed 
calculation  
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The new property of the pattern under 
examination with the rigid shaft follows from 
(8): it has no critical speed if 122

0 <−σσ  or 
C1<A1+ml2 where C1, A1 – polar and equatorial 
rotor inertia momentum. This ratio is 
performed as the cited data demonstrate in the 
majority practical cases. 

An application of the vertical gyroscopic 
rotors with the mass centre above the support 
point contributes to an appearance opportunity 
of a stability loss for a vertical rotation rotor 
regime. The investigated rotor system is under 
effect of the different force factors. Some ones 
facilitate to an instability. The main instability 
factor is in the discussed case the rotor gravity 
momentum, unbalance forces in the under 
resonance zone and often electromagnetic 
reactions forces having a negative stiffness. 
The joint action of all indicated forces at the 
rotor system results in the threshold angular 
speeds appearance dividing the all velocities 
areas into the stable and unstable rotation 
[Volokhovskaya, Zeitman, 1992]. 

The symmetry axis position of the 
unbalanced rotor close to vertical is 
characterized by the stationary periodical 
motion equations (2) solution in the form (5). 
The necessary stability conditions of one can 
be derived from the variations equations for it. 
Those of coincide thoroughly with (2) without 
right parts. The integration of ones results in to 
the characteristic equation (3). The sought 
stability conditions are got from the roots ones 
of the polynomial n-th power. 

Applying the Sturm procedure are obtained 
the rotor vertical rotation conditions 
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where a0… a4  are coefficients from (3). 
It is of use to consider some practical cases for 
the primary analysis is examined the simplest 
instance employed above in (6) when χ=0, 
l=l0. The coefficients ak(k=0,…4) are then 
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where f, 2
0σ , 2σ  are taken from (6). 

The values ϑ  are confined for all practically 
important cases by 0<ϑ ≤ 5. The function f is 
ruptured in this range and varies doubly its sign. 
The first unequality (9) has after the substitution 
of the coefficient values from (10) the quadratic 
of the species  
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There are in occasion under review by the ϑ  
variation  data the following change intervals for 
function f 
1. 0 ≤ f ≤ 1 and -1/σ2<f<0. The unequality is 
satisfied for any value *ω . 
2. 1<f<∞ . Nevertheless is here appeared a 
limitation  
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3. -∞<f<-1/σ2. Here is that of analogous (12) 
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The unequality (11) is satisfied if the rotor 
parametres depending on the magnitude and sign 
of f are obeyed to the conditions (12), (13). 

The function U1 expressing the second 
unequality (9) turns into biquadratic polynomial 
relative to *ω  
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The behaviour investigation of U1 in the given 
intervals of f variation has shown the different 
cases the stability boundary formation depending 
on the coefficients change from f. The unequality 



U1>0 is however satisfied at all values *ω  as (11) 
in the range 0 ≤ f(ϑ )<1. There is thus here a 
single stability condition, namely that of U2>0 
from unequalities (9). 

The function U2 is the polynomial of fifth 
power in regard to parameter 2

*
4
0ωσ=z . Its 

coefficients are the complicated functions of f 
and σ2. An equation U2=0 enables to calculate 
the threshold angular speeds defining the 
stability boundaries. The equation has one real 
positive root z1 in the examined range for f and 
by 0,05 ≤ σ2 ≤ 1. The relationship curves of 
nondimensional angular speeds which are the 
threshold speeds from ϑ  at the fixed values σ2 
are presented on Fig.2. The instability domains 
U2<0 lies under curves but above the ones are 
placed the stable rotation fields (U2>0). These 
demonstrate the extension of the instability areas 
because of the shaft flexibility. 

 
       Figure2.  The stability/instability speed 

                          curves 
 

Conclusion 
It is here proposed a new dynamic model for 

the vibrations investigation of the elastic 
gyroscopic system. The vertical rotors with 
definite constructional particularities are related 
to such class those of. The oscillations of the 
suggested model are described by nonlinear 
motion equations. It has in the general occasion 
at the unstationary vibrations eight a freedom 
degree. Their number is essentially reduced at 
the limitations in practically important cases. 

The vertical rotor system investigation with the 
centre mass above the support point and with the 
applied elastic constraints at the resiliently 
fastened suspension shows the influence of shaft 
buckling to the discussed scheme oscillations 
characteristic. A number of its parameters 

particularly the buckling shaft stiffness affects to 
the stability/instability fields variation of the 
rotor vertical rotation. The derived results enable 
to affirm that the rotor suspension point 
excitation even by the periodical forces in virtue 
of motion equations structure brings about to the 
essential vibration regimes extension of the 
vertical rotor system model. 
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