
 
 
PHYSCON 2015, Istanbul, Turkey, 19-22 August, 2015 

 

SUPERSTABILITY CONDITIONS BASED ROBUST STABILIZATION 
OF A CLASS OF UNCERTAIN HYPERCHAOTIC SYSTEMS 

 
 

Yuri Talagaev 
Mathematics, Economics and Computer 

Sciences Department 
Balashov Institute 

National Research Saratov State University 
Russia 

shangyi@narod.ru 

Andrey Tarakanov 
Physics, and Natural Science Education 

Department 
Borisoglebsk Branch of Voronezh State 

University 
Russia 

aft777@mail.ru 

 
 

 
Abstract 
In the work we present a superstability conditions 
based method of the analysis and control of 
hyperchaotic systems with parametric uncertainty. The 
constructive ways of checking the system 
achievability of the superstable dynamics are 
described. A class of superstabilizable hyperchaotic 
systems is defined. For this class we show the ways of 
using superstability conditions for the robust analysis 
and design of the superstabilizable controller, which 
provides the given characteristics of the transient 
response. The efficiency of the presented approach is 
proved by the numeric simulation result cited in the 
work. 
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1 Introduction 
  For over two decades the attention of researchers in 
the field of modeling and control of complex system 
dynamics has been drawn to hyperchaotic systems [Lü 
and Chen, 2006]. They are described by the system of 
nonlinear autonomous differential equations with 
phase space dimensionality equal to four (4D), and 
their main feature is the dynamic behavior 
characterized by two or more positive Lyapunov 
exponents. Consequently, hyperchaotic systems 
demonstrate more complex behavior which is hard to 
predict and control compared to 3D chaotic systems. 
The specific features of hyperchaotic systems are 
attractive for use in practical applications (secure 
communication, synchronization, etc.), and in demand 
for the analysis of the high-dimensional social and 
economical systems [Yu, Cai and Li, 2012].    
  The total amount of works in the field of hyperchaos 
analysis and control can be divided into two groups. In 
the first group there are the investigations devoted to 
the construction of new hyperchaotic systems [Li, 
Tang and Chen, 2005; Chen, Yang, Qi and Yuana, 

2007; Qi, van Wyk and Chen, 2008; Hu, 2009; 
Correia and Rech, 2010; Li and Sprott, 2014], as well 
as design and circuit implementation of this systems 
[Takahashi, Nakano and Saito, 2004; Yu, Lü and 
Chen, 2007; Liu, Feng and Tse, 2010; Yujun, 
Xingyuan, Mingjun and Huaguang, 2010; Yu, Lu, Yu 
and Chen, 2012; Li, Hu, Tang and Zeng, 2014; El-
Sayed et al., 2014]. The second group consists of the 
works offering various hypechaotic dynamics control 
methods [Yang, Liu and Mao, 2000; Yan, 2004; Li, 
Chen and Tang, 2005; Yan, 2005; Jia, 2007a; Yang, 
Zhang and Chen, 2009; Dou, Sun, Duan and Lü, 2009; 
Wang, Cai, Miao and Tian, 2010; Wang and Zhao, 
2010; Zhu, 2010; Njah, 2010; Pang and Liu, 2011; 
Effati, Saberi Nik, and Jajarmi, 2013; Toopchi 
and Wang, 2014]. As a rule the aim of the control of 
hyperchaotic systems is the stabilization of unstable 
state of equilibrium, i.e. chaos suppression. The 
stability analysis and the design of stable controllers 
are conducted based on the Lyapunov direct method 
that provides sufficient stability condition. 
  The study of the existing results shows that system 
stabilization often leads to the appearance of the 
undesirable peak effect – the dramatic increase in the 
solution norm at the initial phase of the time response. 
However in practice it is required to find the controller 
stabilizing the system with the given characteristics of 
the transient response. Moreover the offered 
stabilization methods assume that the exact values of 
system parameters are known. However in practical 
implementation the system parameters are often 
subject to uncontrollable perturbations. Therefore the 
control should be designed in view of possible 
presence of parametric uncertainty. 
  In this work we offer a way of analysis and synthesis 
allowing overcoming the mentioned difficulties and 
broadening our understanding of the properties of 
hyperchaotic systems. The method is based on the use 
of superstability conditions [Polyak and Shcherbakov, 
2002a,b], that just like the quadratic stability 
approach, provide the sufficient stability conditions. 
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The superstability conditions are convenient as they 
are formulated in the terms of the system matrix 
elements, not their eigenvalues. The arising linear 
restrictions on the system parameters are strict, and 
can not be performed for any controlled system.  
However, if superstability is achievable, it will be 
possible to find effective solutions for a number of 
complex control problems. 
  The application of superstability conditions to 
chaotic systems begins in [Talagaev and Tarakanov, 
2012], where the conditions of achieving 
superstability were studied for a class of the 3D 
chaotic systems. In [Talagaev, 2014] it is shown that 
the problems of robust stabilization and restricted 
perturbation suppression can be solved by applying 
the superstability conditions to 3D chaotic systems. 
The aim of this work is the extension of the results 
achieved earlier on hyperchaotic systems. We single 
out a class of hyperchaotic systems for which we 
study the superstability achievement conditions and 
demonstrate the efficiency of superstability conditions 
for the robust analysis and control under parametric 
uncertainty. The offered approach allows revealing 
superstabilizable hyperchaotic systems and finding the 
superstabilizing control that provides the given 
characteristics of transient processes.  
 
2 Superstability of chaotic and hyperchaotic 
systems 
  In this part we give the basic properties of the 
superstable systems and analyze the conditions that 
make the system superstabilization possible. 
 
2.1 Preliminaries 
  Consider the linear controlled system 
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are called superstable, if 
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where )(A  – is the superstability degree of the 

matrix А . Superstability conditions are formulated in 
terms of the elements of system matrix. Superstability 
is a sufficient stability condition. If a system is 
superstable, it will always be stable (all eigenvalues of 
А  have negative real parts). The inverse proposition 

is not always true. Thus, superstable systems are the 
subclass of the stable ones. 
  Superstable systems possess practically useful 
properties. With zero input ( ) the solution 

norm for any initial condition decreases monotonously 

and exponentially, that is . 

Due to this stability with respect to initial conditions 
there is no drastic increase of a solution norm (peak 

effect) at the initial stage of the transient response. 
Unlike superstable systems, the stable ones do not 
possess this property. If control exists and is restricted 
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  An important step that expands the theory of 
superstable systems is the generalization of 
superstability conditions to nonlinear dynamic 
systems capable of exhibiting chaotic behavior. It is 
possible, as superstability (unlike stability) remains 
under nonlinear perturbations. 
 
2.2 Superstability achievement conditions 
  Consider a class of controlled nonlinear systems 
described by the following equation: 
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where  is a nonlinear part of the system, R:g

|)( 0xxg . Let at 0)( tu
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 the parameter values be 

such that the system (3) will demonstrate chaotic (or 
hyperchaotic) dynamics. Assume that 1) the 
dimensionality of the phase space ; 2) the 
system is dissipative, 3) the trajectories of the systems 
evolve in some bounded region }||) Lt( 

A

; 

4) the system has the zero equilibrium state and the 
Jacobi matrix J   at 0x . 
  The control of chaotic system (3) is in designing 
control laws that stabilize the systems at the zero 
equilibrium (hence chaos suppression). We replace the 
requirements for stability provision with the ones for 
superstability provision. If the system (3) possesses 
chaotic dynamics, then the equilibrium state 0x  is 
unstable and the superstability conditions (2) are not 
performed. Then the superstabilization problem will 
be as follows. It is necessary to find the state feedback 

Kxu  ,   , (4) nm
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which provides superstability of the system (3). 
Substituting of the control law (4) into (3) the closed-
loop system will be written as 

)(tx  ,   (5) BKAAc 
BA,and for the given matrices  the superstabilization 

problem will be reduced to finding the 
superstabilizing matrix K , that provides the 
performance of superstability condition 0) c(A  for 

the matrix . cA

  The application of the superstability conditions (2) to 
the system (5) leads to acute constraints on the 
elements of the matrix BKAAc  . They can not be 

performed for every system. The possibility of system 
superstabilization (i.e. the existence of the 
superstabilizing regulator) can be checked in two 
ways. 



 
 

  Approach 1. The superstability of the matrix 
, HAAc  BKH   will provide the performance 

of conditions 

        , i , (6) 



ij

ijijiiii KhaKha |)(|))(( n,...,1

where ,  is the th line of the 

matrix. If we introduce additional variables 
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the superstability condition (6) for the matrix  can 

be written in the equivalent form. For diagonal 
elements of the matrix  the condition will be 

written as 
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and for all others it will be 
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Now to check the superstability of the matrix  we 

need  and , 
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mentioned inequalities to exist at some 0 . The 
check can be performed by solving the linear 
programming (LP) problem: 

max  subject to constraints (7) and (8). 

  The variables in the LP problem are the matrices K , 
 and the scalar )( ijpP   . If the LP problem has the 

solution *K , , and for all that , then the 

controller  provides the superstability of the 

closed-loop system (5). The value  

is the best estimation, at which its state satisfies the 

condition . If while solving the 

LP problem it turns out that , superstabilization 
is impossible. 
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  Approach 2. Consider the chaotic system 
. If superstability is achievable, then for 

the given unstable matrix 
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The matrix A  of the system is often rarefied, that is 

some  are equal to zero. We restrict the choice of 

matrices , that provide the transformation of the 
elements of the matrix 
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the elements of the matrices satisfy the condition 
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The restriction (10) allows designing the matrix W  
structurally equivalent to A . Define the distance 
between the unstable matrix A  and the superstable 

matrix WAA 
~

 as , 

where 
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superstabilizability is confirmed via solving the 
quadratic programming (QP) problem: 

|||| W
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min  subject to constraints (9) and (10). 

  If the solution  of the QP problem exists, then for 
the given unstable matrix A  we will find the closest 

superstable matrix **~
WA A  . Simultaneously for 

the system (3) we find the superstabilizing regulator 
Kxu  , which provides the superstability of the 

matrix BKAAc   at IB   and . *WK 

В

  Both approaches allow finding the superstabilizing 
control, if there exists one. The first approach allows 
checking whether the given controller (the matrix  
is given) is able to superstabilize the system. The 
second approach is more generic and constructive at 
the same time. It allows learning whether the 
superstabilization is possible in principle. 
 
2.3 A class of superstabilizable systems 
  Having sorted out various hyperchaotic systems, we 
can see that superstability is a rare property. It is 
shown in [Talagaev and Tarakanov, 2012] that the 
structure of the matrix A  determines the possibility of 
accessing superstability by the system (3). For the 
solution of the QP problem to exist it is enough to 
perform the condition  for the diagonal 

elements of the matrix 

0iia

A . Indeed, if , it is 

always possible to find such  that the conditions 

(9) will be performed. This conclusion can serve as a 
selection criterion for superstabilizable chaotic and 
hyperchaotic systems. In a general case a class of  
superstabilizable systems can be written as 
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  3D case. An example of superstabilizable system 
among the chaotic systems with the phase space 
dimensionality 3n
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where . Аt , T)3 aa  

and 02112 aa  the system becomes Lorenz, Chen and 

Lu chaotic systems, correspondingly [Lu, Chen and 
Cheng, 2004]. The results of the analysis and 
superstabilization are shown in [Talagaev, 2014]. 
  4D case. The search of the superstabilizable systems 
can also be conducted among the systems with the 
phase space dimensionality equal to four ( 4n ). 
Some examples of the superstabilizable hyperchaotic 
systems are given below: the Li system [Li, Tang and 
Chen, 2005] 
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the Jia system [Jia, 2007b] 

   (11) 

.

,

,

,)(

4314

2133

23112

4121

dxxxx

xxcxx

xxxbxx

xxxax















This list is not complete and can be expanded. An 
example of the system (11) stabilization will be given 
further. 
 
3 Robust analysis and controller design 
  The efficiency of the superstability conditions is not 
limited to the presented analysis and solution of the 
superstabilization problem for a class of chaotic 
systems. The field of application of superstability is 
much wider. In this part we demonstrate the efficiency 
of superstability conditions for solving the problem of 
the robust synthesis and analysis. 
 
3.1 Robust analysis 
  Let the presence of the uncertainty be caused by the 
inaccuracies in the measurements of parameter values 
of the linear part of the system  
 )()( 0 xgxAx   .        (3) 
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  Let the nominal system  be 

superstable. Then, for the interval matrix family 
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  Retaining of superstability means performing the 
conditions 

0|| 00  
ij

ijijiiii aa  , . ni ,...,1

ni ,...,1
  They will be performed, if  

0)|(| 00  
ij

ijijiiii lala  , . 

  From this we get a lower estimation of the 
superstability radius  









j
ij

ij
ijii

i l

aa ||

min

00

* . 

  Having calculated the value of  we get the 

necessary information, which allows making a 
judgment on the preservation of superstability for this 
state of equilibrium in the presence of some 
uncertainty at the precise measurement of the system 
parameters. Note that by changing the superstability 
preservation demand on the stability we complicate 
the problem substantially. 

*

 
3.2 Robust superstabilization  
  Study the problem of the superstabilizing regulator 
synthesis at parametric uncertainty. 
  Consider the uncertain system 
 BuxgxAx  )()( 0  . (12) 
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the feedback Kxu   and the matrix of the closed-loop 
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superstabilizable via the given feedback, if 
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3.3 The example 
  Let’s design the superstabilizing regulator for the 
system (11), written in the form  
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The system exhibits hyperchaotic behavior when the 
parameter values are taken as , 10a 28b , 

3/8c , 3.1d . Fig. 1 shows the attractor 
corresponding to the situation when the system has 
two positive Lyapunov exponents.  
  In the hyperchaotic regime the superstability 
conditions for the matrix A are not performed. The 
characteristic values of the Jacbian matrix at the zero 
equilibrium are -22.8277, 11.8277, -2.6667 and 
1.3000. By adding the controller to the system, we get 
the following model of the controlled system 

BuxGxxAx  110 . 



 
 

 

 
Figure 1. The attractor of the hyperchaotic system 
(12): (a) x1–x2 plane; (b) x1–x4 plane. 
 
  To stabilize the system, we define the feedback 
controller . Let’s find out if there exists the 

gain matrix 

Kxu 
R 44K  able to provide the performance 

of superstability conditions for the matrix of the 
closed-loop system . While considering 

the matrix  we see that . Then if we choose 
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At that the values 0,,, 4321   can be chosen in 

such a way as to provide the desirable stability reserve 
of the system.  

  Fig. 2 shows the results of the numerical simulation 
of the controlled hyperchaotic system with the initial 
condition )5,5,5,5()0( x

5.04

. As can be seen the 

controller with the chosen superstability degree 
...1    stabilizes the system in such a way 

that at the initial stage of the time response the peak 
effect does not occur. 

 
Figure 2. Time responses of the controlled system. 

 

  Now assume that nonzero system parameters in the 
matrix  0AA

ij ij|

 possess the uncertainty 

, , where  are the 

nominal parameter values for which we designed the 

superstabilizing regulator earlier. Let . Then the 

uncertain system  

ijij aa  0 ijl| 0ija

1ijl

BuxGxxAx  110 )(   

is superstabilizable by the feedback controller 

xKu s , if . As , we get nAc /)( 0  5.0)( 0 cA

125.0l . 

 
4 Conclusion 
  The method of the analysis and hyperchaotic system 
control aimed at providing superstability is presented. 
It is shown that the implementation of superstability 
conditions is an effective way of solving the problems 
of robust analysis and synthesis of hyperchaotic 
systems with parameter uncertainties. An advantage of 
the offered approach is the possibility to provide the 
given transient response characteristics. 
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