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Abstract
This is a numerical study about new results on the dy-

namic stability of a beam structure. A uniform can-
tilever beam with a stiffness element attached to it is
investigated. It is assumed that the stiffness parame-
ter of the attached element can be changed periodically
with time. Linear and non-linear properties of the stiff-
ness element are considered. The beam structure is dis-
cretized by a Finite Element approach. The equations
of motion describing the planar vibrations of the beam
structure lead to a system with a time-periodic stiffness
coefficient. The stability of the linearized system is in-
vestigated by a numerical method based on Floquet’s
theorem. Numerical simulation is employed to calcu-
late time series of the transient beam deflections for the
linear and the non-linear case.
It is demonstrated that suppression of free vibrations

can be more effective, if the frequency of the periodic
stiffness variation is that of a non-resonant parametric
combination resonance frequency. Numerical studies
show how the location of the attached stiffness ele-
ment affects the performance of the proposed method.
The assumed moderate non-linearity of the stiffness
element has almost no effect on the vibrations of the
beam, which confirms the useability of simple electro-
magnetic devices to realize parametric stiffness excita-
tion.
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1 Introduction
A time-periodic force acting on a beam structure may

create various dynamical effects, depending on the di-
rection of the force and the direction of the dominant
resulting motion. If such a force is generated by a stiff-
ness element which changes properties periodically,
such systems are classified as parametrically excited
systems (PE-systems), see [Cartmell, 1990].

Numerous studies have focused in the past on para-
metrically excited systems and structures because of
the interesting phenomena which may occur in such
systems. For example, if the frequency of a time-
periodic parameter variation is twice the value of a nat-
ural frequency of the system, a dynamic instability with
unbounded amplitudes (in the linear case) may occur.
This phenomenon is commonly termedparametric res-
onance although it is caused by a loss of stability. Inter-
estingly, this effect may also occur for combinations of
two or more natural frequencies and is then known as
parametric combination resonance [Cartmell, 1990].
Because the loss of stability may create severe prob-
lems, almost all investigations were focused on those
cases, where the combination resonances appeared to
be resonant. Since the non-resonant cases were not
dangerous they did not seem to be worth of further
investigations. For instance, reference [Yeh and Kuo,
2004] is a recent experimental study, which investigates
a beam system very similar to the one used in this nu-
merical investigation. Several instability regions (para-
metric resonances) of a composite beam under para-
metric excitation are identified and compared with an-
alytical results. The stable (non-resonant) parametric
combination resonances, however, are not investigated.
The misinterpretation about the insignificance of sta-

ble parametric resonances became obvious when Tondl
discovered and reported that a non-resonant parametric
combination resonance exhibits interesting properties,
which have not been studied so far [Tondl, 1998]. To
summarize the findings in a few words, improved vi-
bration suppression may be observed for a system with
parametric excitation at such a frequency. First stud-
ies of Tondl and others dealt with self-excited low-dof
systems and the newly discovered effect was used to
stabilize the otherwise unstable system, see [Tondl and
Ecker, 1999]. An extensive overview on parametric ex-
citation as a means to achieve vibration suppression is
found in [Ecker, 2003] and a thorough analytical analy-
sis in [Dohnal, 2005]. It is an advantage of this method
that the amplitude and the frequency of the stiffness
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Figure 1. Planar cantilever beam model composed ofn finite ele-

ments with parametric excitationkP E(t) atx=xP E

variation can be determined in advance. A signal feed-
back and a closed loop control is therefore not needed.
The beneficial effect of a parametric stiffness excita-

tion (PSE) at the frequency of a non-resonant paramet-
ric combination resonance is not restricted to low-dof
lumped mass systems. In [Ecker, Dohnal and Springer,
2005] and [Dohnal, Ecker and Springer, 2005] this idea
was already applied to a continuous structure by apply-
ing a time-periodic axial force to a cantilever beam. It
was demonstrated by numerical experiments that free
vibrations can be reduced significantly faster by this
new approach.
In this contribution we will consider the same one-

dimensional continuous system of a cantilever beam,
but parametric excitation is achieved by a single, con-
trolled stiffness element attached to the beam.

2 Mathematical model of the mechanical system
Figure 1 shows a cantilever beam which performs pla-

nar vibrations in the x-y plane and which is paramet-
rically excited by a single stiffness elementkPE(t) at-
tached to the beam at an arbitrary positionxPE . The
direction of deformation of the stiffness element is per-
pendicular to the undeflected beam axis. The beam is
assembled fromn finite bending elements withn + 1
nodal pointsi = 0, 1, 2, ...n.
Figure 2 shows a finite beam element(i) of lengthl(i),

constant cross sectionA(i), constant bending stiffness
EI(i) andρ denoting the constant density of the beam
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Figure 2. Finite beam element(i) with planar bending deformation

material.
The lateral displacement fieldvi(x, t) of a beam ele-

ment(i) is approximated by Rayleigh-Ritz shape func-
tions in terms of the nodal point displacementsv1, v2

and the nodal angular deflectionsγ1, γ2 in the form

v(i)(ξ, t) = [N1 (ξ) , N2 (ξ) , N3 (ξ) , N4 (ξ)]
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= N(ξ)q(i), (1)

whereξ = x/l(i). FunctionsN1..4 represent suitable
Hermitian polynomials of third order, see [Géradin and
Rixen, 1994], which also satisfy boundary conditions

v(i) (0, t) = v1 (t) , (2)

v(i) (1, t) = v2 (t) , (3)

∂v(i) (0, t)

∂ξ
= l(i)γ1 (t) , (4)

∂v(i) (1, t)

∂ξ
= l(i)γ2 (t) . (5)

2.1 Equations of motion for the cantilever beam
The equations of motion can be derived from

d’Alembert´s principle

δWI + δWC + δWD + δWPE = 0 (6)

whereδWI , δWC , δWN , andδWPE , respectively, re-
present the virtual works of inertia forces, conserva-
tive (elastic) and non-conservative (damping) forces



and time-periodic (PE) forces in the system. Bernoulli-
Euler beam theory is considered, which neglects rotary
inertia of the beam cross section.
According to Eq. (1) the virtual work of the inertia

forces for each beam element is

δWI(i) = −δqT
(i)M(i)q̈(i) (7)

with the element mass matrix

M(i) =
ρl(i)A(i)
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The virtual work of the conservative forces due to a

deflection of the beam is related to the potential energy
of each beam element. WithδWC(i) = −δV(i) and
Eq. (1) it follows

δWC(i) = −δqT
(i)KB(i)q(i) (9)

where

KB(i) =
EI(i)
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(10)

is the finite beam element bending stiffness matrix.
Note that the attached time-periodic stiffness element
is not considered here and will be treated separately.
From structural dynamics it is known that material

damping in the beam may be approximated by inter-
nal stiffness-proportional viscous forces. Therefore,
the element damping matrix is estimated by

C(i) = βKB(i) (11)

with β being an empirical factor.

2.2 Time-periodic stiffness element
Finally, the time-periodic stiffness elementkPE(t),

which may be attached to any beam element with nodes
(i − 1, i) at a dimensionless distanceξ from the lower
node(i−1), see Figs. 1 and 2, is introduced. Since it is
quite simple and convenient to realize parametric stiff-
ness excitation by an electromagnetic device, see [Yeh
and Kuo, 2004] and [Schmidt et al., 2007], a non-linear
parametric stiffness excitation is assumed. The motiva-
tion for a non-linear model is based on the non-linear
relationship between magnetic forces and the width of
the air gap. In a typical realization of such an elec-
tromagnetic PE-device the dynamical properties will
be dominated by a constant stiffness parameter plus a

component which is a quadratic function of the beam
deflection. Thus, the restoring force created by the PE-
device will depend primarily in a linear manner on the
deflection, and a cubic component will be observed too,
leading to a hardening spring behavior.
The potential energy stored in the stiffness element,

which is attached to beam element(i), is given by

VPE(i) =
1

2
klin

PE(t)v2
(i) (ξ, t) +

1

4
kcub

PE(t)v4
(i) (ξ, t) ,

(12)
with time-periodic coefficientsklin

PE(t) for the constant
stiffness component andkcub

PE(t) for the quadratic com-
ponent. Note, that the annotation of the coefficients re-
fer to the resulting restoring forces as functions of the
deflection only, which is more intuitive in this context.
For both components of the parametric stiffness exci-

tation (PSE) it is assumed that the time-periodic func-
tion kPE (t) is a harmonic function, with amplitude
k̂PE and frequencyη, which may be represented by

klin
PE (t) = k̂lin

PE cos(ηt), (13)

kcub
PE (t) = k̂cub

PE cos(ηt). (14)

With δWPE(i) = −δVPE(i) and Eq. (1) it follows

δWPE(i) = −δqT
(i)KPE(i)q(i) (15)

where

KPE(i) = klin
PE(t)NT N + kcub

PE(t)NT N(Iq(i))
2 (16)

= klin
PE(t)UPE(i)(ξ) + kcub

PE(t)UPE(i)(ξ)(Iq(i))
2

is the finite element matrix for an attached stiffness el-
ement. The constant geometry matrixUPE(i)(ξ) is
a function of the point of attachment of the stiffness
element and contains polynomials of order six (max-
imum). Since it is convenient to calculate the matrix
elements numerically, the rather lengthy analytical rep-
resentation is omitted here for brevity.
The virtual works of all beam elements are added, ac-

cording to the well known assembling procedure for
mass, stiffness, and damping matrices of the free-free
beam model. From Fig. 1 the boundary conditions for
the clamped end atx = 0 arev1 = 0, γ1 = 0 for the
first element(i) = (1) , i.e. the first two rows and the
first two columns of the assembled matrices have to be
omitted. Then Eq. (17) finally leads to

−δqT Mq̈ − δqT βKBq̇ − δqT KBq − (17)

− δqT KPE(q, t)q = 0

where M, KB and KPE(q, t) are (2n × 2n)-
dimensional symmetric mass and stiffness matrices, re-
spectively for the entire cantilever beam and

q = {v1, γ1, v2, γ2, .....vn, γn}
T (18)



is the global beam displacement vector containing lat-
eral displacementsvi and slope anglesγi at the finite
element nodal points.
With Eq. (17) the full set of equations of motion for

the non-linear system finally becomes

Mq̈ + βKBq̇ + KBq + (19)

+ klin
PE(t)UPEq + kcub

PE(t)UPE(Iq)2q = 0.

3 Parametric resonance frequencies
A system with parametric stiffness excitation (PSE)

at a frequencyηPSE may exhibitPrinciple Parametric
Resonances at frequenciesηPSE = ηpr

j/n andParamet-
ric Combination Resonances at frequenciesηPSE =
ηcr

j±k/n. These frequencies are defined as follows

ηpr
j/n =

2Ωj

n
, ηcr

j±k/n =
|Ωj ± Ωk|

n
, (20)

(j, k = 1, 2), (n = 1, 2, 3, ...).

SymbolsΩj andΩk denote thej-th (k-th) natural fre-
quency of the system. The denominatorn represents
the order of the parametric resonance. In most cases
only the first order resonancesn = 1 are significant.
Instability of a system may occur at and in the vicin-
ity of these frequencies, except for non-resonant PE-
frequencies, as discussed in Section 1.
To predict parametric resonances and also the appro-

priate PSE-frequency for vibration suppression it is
necessary to know the natural frequencies of the can-
tilever beam. Therefore, the undamped natural fre-
quenciesΩi have to be calculated for the system by
solving the eigenvalue problem forMq̈ + KBq = 0.
Note that the time-periodic stiffness element as intro-
duced in Section 2.2 exhibits a zero average value and
therefore does not contribute in this analysis to the con-
stant stiffness matrixKB . For the symmetric stiffness
matrix KB = KT

B parametric vibration suppression
will occur for the difference-type combination reso-
nanceηcr

(2−1)/1 = (Ω2 − Ω1) and an interval of in-
stability will be observed at the summation-type com-
bination resonanceηcr

(1+2)/1 = (Ω1 + Ω2). Of course,
resonances and non-resonances of higher order(n ≥ 2)
as well as such resulting from combinations of higher
natural frequencies(Ωi, i > 2) may exist, but are not
investigated in this study.

4 Method of investigation
A non-linear system of differential equations with pe-

riodic coefficients is defined by Eq. (19) in combina-
tion with matrices (8), (10), (16) and functions (13)
and (14). The stability of the trivial solutionq = 0

for the linearized system can be investigated by means
of Floquet-theory, see [Verhulst, 2000]. Floquet’s the-
orem postulates that for a system of first order differen-

tial equations

ẏ = A(t) y, A(t) = A(t + T ), (21)

with a T -periodic matrixA(t) each fundamental ma-
trix M(t) of the system can be represented as a product
of two factors

M(t) = Q(t) exp(tC), (22)

whereQ(t) is aT -periodic matrix function andC is a
constant matrix.
Stability of a linear time-periodic system can be deter-

mined either from the eigenvalues of theFloquet expo-
nent matrix C or from themonodromy matrix M(T ),
which is the state transition matrix evaluated after a pe-
riod T . The monodromy matrix can be calculated nu-
merically by repeated integration of the system equa-
tions over one periodT , starting from independent sets
of initial conditions. It is convenient to use the columns
of the identity matrixI as initial vectors to start from.
By solvingn initial value problems over one periodT

ẏ = A(t)y, [y(0)1,y(0)2, ...,y(0)n] = I, t = [0, T ],
(23)

and by arranging the results as follows

M(T ) = [y(T )1,y(T )2, ...,y(T )n] (24)

the monodromy matrix is obtained. Finally the eigen-
values of the monodromy matrix

Λ = eig(M(T )), (25)

are calculated numerically. The system is unstable if
any of the eigenvalues are larger than one in magnitude

max(|Λ1|, |Λ2|, ..., |Λn|)

{

< 1 stable system
> 1 unstable system.

(26)
To carry out the stability analysis and obtain the fol-
lowing results, Eq. (19) was linearized first by omitting
the non-linear contribution(kcub

PE(t) = 0). Then a first
order system (21) was generated and the procedure as
outlined was applied.

5 Results from a stability analysis
For the following numerical study the same data for

a slender and uniform cantilever beam were used as
in [Ecker, Dohnal and Springer, 2005] and [Dohnal,
Ecker and Springer, 2005]. This enables the compar-
ison of results obtained from two different methods to
create parametric stiffness excitation. Table 1 lists the
size and mechanical properties of the beam structure as
investigated.



Parameter Symbol Value Units

Length l 1 m

Cross section A 5 × 10 mm2

Density ρ 7850 kg/m3

Young’s Modulus E 210 GPa

Damping factor β 0.77 · 10−3 sec

Gravitational forces are not considered in this example

Table 1. Mechanical parameters of the cantilever beam

Frequency Value Units FEMs

Ω1 26.23 (26.22) sec−1 6

Ω2 164.41 (164.36) sec−1 6

Ω3 461.07 (460.26) sec−1 6

2Ω1 52.46 sec−1 6

Ω2 − Ω1 138.18 sec−1 6

Ω1 + Ω2 190.63 sec−1 6

Table 2. Natural frequencies of the undamped cantilever beam,ob-

tained for a model with 6 FEMs. Values in parentheses hold for the

analytic solution.

In this numerical study the beam structure is dis-
cretized by 6 identical finite beam elements (FEMs),
see Section 2. The number of elements was chosen to
obtain a good agreement for the lowest three natural
frequencies with regard to the FE-model and the an-
alytical result. Table 2 shows the natural frequencies
obtained for a 6-element model and also for an ana-
lytical solution as the reference. There is no need to
further increase the number of elements for studies as
carried out here. This can be concluded from the results
obtained in [Dohnal, Ecker and Springer, 2005] which
employs only four finite beam elements and achieves
almost identical results as the study in [Ecker, Dohnal
and Springer, 2005]. Hence, it can be concluded that
the following results are representative and practically
not affected by the level of discretization.

Parametric excitation (PE) is achieved by a stiffness
element with time-periodic parameter values as defined
by Eqs. (13),(14). Note thatkPE(t) has no constant
component and therefore will take on also negative val-
ues. PE-amplitudeŝklin

PE , k̂cub
PE and frequencyη, as well

as the positionxPE will be subject of parameter studies
in the following investigations.

At first, the stability of the parametrically excited lin-
ear system is investigated by the numerical method
explained. Figure 3 shows how the largest eigen-
value of the monodromy matrix depends on the PE-
frequency. One can easily identify rather large in-
tervals of instability near2Ω1 = 52.5 and also near
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Ω1 + Ω2 = 190.6, where the maximum eigenvalue
exceeds 1(max (abs(Λ)) > 1). In the vicinity of
Ω2 − Ω1 = η ' 138 a decrease of the largest eigen-
value is observed, indicating enhanced stability of the
system. For this diagram it is assumed that the lin-
ear PE-stiffness element is attached to the top of the
beam(xPE = l). Three different values are chosen for
k̂lin

PE = [0.5 ∗ 65.52, 65.52, 2 ∗ 65.52], while k̂cub
PE = 0.

The choice for the coefficient of the linear parameter is
based on the bending stiffnesskB(l) = 65.52 N/m at
the top nodexPE = l = 1 m of the beam and relates
the bending stiffness to the PSE-amplitude.

Since the natural frequencies of the system also be-
come periodic functions of time when parametric stiff-
ness excitation is introduced, it is interesting to check
how these natural frequencies change, when the maxi-
mum time-periodic value is reached. In Fig. 4 the sen-
sitivity of the first and most important natural frequen-
cies are shown. As we will use later amplitudes for the
linear parametric stiffness excitation within the range
shown in Fig. 4, one can see that the variation of the
natural frequencies will be quite insignificant and not
really important in this study.
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The optimal point for attaching a PE-stiffness element
with k̂PE ≤ 3 ∗ kB(l) is the tip of the beam. Figure 5
shows fork̂PE = 113.22 N/m how the largest eigen-
value depends on the location where the PE-stiffness
element is attached to the beam, with an absolute min-
imum atxPE = l = 1 m.
For a cantilever beam the familiar formula

kB(x) =
3EI

x3
(27)

holds and shows that the bending stiffness increases
with the third power, for decreasing length of the beam.
One cannot expected that a rather small but still effec-
tive stiffness amplitude atxPE = l will give also sat-
isfactory or even better results atxPE < l. Therefore,
the amplitudêkPE is set into relation to the bending
stiffness at the point of attachmentkB(xPE).
Figure 6 shows a diagram for the the largest eigen-

value as a function of the positionxPE and also the fre-
quencyη. In this diagram̂klin

PE = kB(xPE), k̂cub
PE = 0

holds, which means that larger PE-amplitudes are used
as the position of attachment moves away from the tip
of the beam. One can see from this diagram that near
xPE ' 5l/6 almost no reduction of the eigenvalue can
be achieved and hence increased damping cannot be

η

Λ

Figure 6. Largest absolute eigenvalue of the monodromy matrix

max(|Λi|) as a function of the PE-frequencyη and the PE-location

xP E for k̂lin
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expected. Forl/3 > xPE > l/6, however, a major
reduction of the eigenvalue is observed which exceeds
the result forxPE = l by far.
It was shown, that a significant reduction of the largest

eigenvalue of the monodromy matrix, which deter-
mines the stability of the cantilever beam, can be
achieved by parametric excitation at a difference-type
combination frequency. This result, however, cannot
be converted easily into a familiar damping measure.
Therefore, we will now investigate the beam structure
in the time domain, to show how this affects and en-
hances the damping properties of the structure.

6 Results obtained in the time domain
Since the beam structure can be represented by a lin-

ear model, it is convenient to analyze first the lowest
vibrational modes of the linear-time-invariant (LTI)-
system, and then use these results as a benchmark for
the parametrically excited structure.
In Fig. 7 the corresponding mode shapes are plot-

ted. The first three natural frequencies of the un-
damped structure have been listed already in Table 2.
The damping ratios for these modes areζ1 = 0.01,
ζ1 = 0.063 andζ1 = 0.178 for the damping factorβ, as
introduced in Eq. (11). Note that stiffness-proportional
damping leads to significantly higher damping ratios
for higher modes.
Figures 8 show time series of the lateral deflections

v3,6 at the nodal points 3 and 6 of the beam. Point 3
is located at the mid-span positionx = l/2 and point
6 is at the tip of the beam. The first mode shape was
assumed as an initial deflection of the beam, the ini-
tial velocity was set to zero. These initial conditions
only excite the first vibrational mode and consequently
a single-frequency harmonic vibration at (almost)Ω1

is observed. Deflections at point 3 and point 6 are in
phase, according to the first mode shape. Without para-
metric stiffness excitation the vibration in Fig. 8(top)
decays pretty slowly, since the damping ratio is just
1%, (ζ = 0.01). For Fig. 8(bottom) parametric excita-
tion is applied to the beam structure and the numerical
study is repeated in the same manner as before. For the
parameters of the parametric excitation the parameter
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valuesη = 138.0, k̂lin
PE(l) = 131.04N/m, were chosen.

The amplitude of the parametric stiffness excitation is
set to a value of twice the bending stiffness of the can-
tilever beam if deflected at the tip of the beam. This
seems to be a reasonable and realistic assumption for
the performance of the electromagnetic device to cre-
ate the parametric stiffness excitation. It is clearly to
see that the initial vibrations decay much faster, com-
pared to the result without PE. It is also remarkable,
that a vibration component of higher frequency is ob-
served, which is not contained in the initial state of the
numerical experiment. Further analysis shows that sec-
ond mode vibrations are generated by the parametric
stiffness excitation and contribute to the rapid decay
of vibrations. Concluding from related results in the
earlier study [Ecker, Dohnal and Springer, 2005] on
the axially excited beam, the effect of the parametric
stiffness excitation is approximately equivalent to an
increase of the damping of the first vibrational mode
by a factor of ten.

In Fig. 9 results are shown for non-linear paramet-
ric stiffness excitation. Figure 9 (top) assumes a non-
linear component in addition to the linear PE with a
parameter value for the cubic coefficient ofk̂cub

PE(l) =
131.04 N/m3. With a coefficient of this value a very
weak non-linearity is introduced, since the restoring
force of the cubic component will reach the same
amount as the linear component only when the de-
flection would become 1 meter. Moreover, a cubic
parabola has a horizontal tangent and vanishing cur-

vature forx = 0. Therefore, after linearization of
the restoring force function the cubic component will
disappear without any contribution. Consequently, it
has to be expected that the non-linear parametric stiff-
ness excitation will have only very little effect on the
result. Indeed, if one compares Fig. 9 (top) with
Fig. 8(bottom) there is no difference visible. Closer
inspection of the numerical data show, of course, some
differences, which are not visible in the plots. There-
fore, the non-linear parameter was increased by a fac-
tor of ten and the result Fig. 9 (bottom) was obtained.
Even for this parameter set only minor differences are
observed. Of course, with the numerical model it is
easy to further increase the non-linear component and
demonstrate the effect of nonlinearity for larger values
of the parameters. However, we will postpone such an
investigation until actual parameters for a PSE-device
are available and a realistic design study suggests to
further increase the non-linear parameter value.

The final result and figure is devoted to second mode
vibrations. In Fig. 10 it is assumed that the initial de-
flection of the beam is the2nd mode. Figure 10 (top)
holds for linear PE and Fig. 10 (bottom) for the same
parameters of a weak nonlinearity as in Fig. 9 (top).
Again in this comparison the cubic nonlinearity has
practically no influence on the results. The qualitative
behavior of the system, however, is different for initial
conditions favoring the2nd mode. Immediately after
the vibrations start, within one second a few vibration
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Figure 9. Transients of weakly damped beam(β=0.77·10−3) for

1st mode initial condition, with non-linear PE (η=138,k̂lin
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Figure 10. Transients of weakly damped beam(β=0.77·10−3) for

2st mode initial condition. Top: with linear PE (η=138,k̂lin
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cycles are performed with the frequency of the second
mode. Then second mode vibrations decay fast, but
first node vibrations appear and become dominant. Ob-
viously, an energy transfer from the second to the first
mode takes place, which is initiated by parametric stiff-
ness excitation. After about 0.5 seconds the vibration
signals become quite similar to those obtained for the
first mode initial conditions.

7 Conclusion
In this numerical study new findings on paramet-

ric resonances are presented. It is demonstrated, that
a parametrically excited beam structure exhibits en-
hanced damping properties, when excited by a non-
resonant parametric combination resonance frequency.
The damping effect achievable by this method is signif-
icant and works best for vibrations in the first mode of
the structure. A mild od moderate non-linear behavior
of the device to create the time-periodic stiffness has
no negative effect on the damping effect created by a
non-resonant parametric excitation.
The striking advantage of the method presented is

the fact that parametric excitation only needs an open-
loop control system. This might be very advantageous
for real-world applications, since it will save the cost,
weight and energy for sensors and controllers, which
might be very important in certain applications.
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