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Abstract
We find that the regularity in the spiking behaviour of

a neuronal network maximizes at a certain level of en-
vironment noise. This effect referred to as coherence
resonance is demonstrated in a random complex net-
work of Rulkov neurons. An external stimulus added to
some of neurons excites them, and then activates other
neurons in the network. The network coherence is also
maximized at the certain stimulus amplitude, coupling
strength, and the number of stimulated neurons. The
coherence enhancement is characterized by the normal-
ized standard deviation from the average inter-spike in-
terval and by the signal-to-noise ratio calculated from
power spectra of the excited neurons.
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1 Introduction
Noise can lead to more order in the dynamics. To

be mentioned here are the effects of noiseinduced or-
der in chaotic dynamics [Matsumoto and Tsuda, 1983],
synchronization by external noise, and stochastic res-
onance [Benzi, Sutera, and Vulpiani, 1981; Jung,
1993; Moss, Pierson and O’Gorman, 1994; Andreev,
Makarov, Runnova, Pisarchik and Hramov, 2013].
Also, noise has been shown to play a stabilizing role

in ensembles of coupled oscillators and maps [Hakim
and Rappel, 1994]. Especially interesting is the phe-
nomenon of stochastic resonance, which appears when
a nonlinear system is simultaneously driven by noise
and a periodic signal. At a certain noise amplitude the
periodic response is maximal.
The interest in mathematical modeling of neuronal

synchronization has significantly increased after neu-
robiological experiments with two electrically cou-
pled neurons [Elson, Selverston, Huerta, Rulkov, Ra-
binovich, and Abarbanel, 1998], where various syn-
chronous states have been identified. In order to sim-
ulate cooperative neuron dynamics, numerous models
based on either iterative maps of differential equations
in various coupling configurations have been devel-
oped [Elson, Selverston, Huerta, Rulkov, Rabinovich,
and Abarbanel, 1998]. Depending on the coupling
strength and synaptic delay time, coupled neurons gen-
erate spike sequences that are matching in their tim-
ings, or bursts either with lag or anticipation [Lang,
Lu, and Kurths, 2010]. When three or more oscilla-
tors are accounted for, a large number of coupling con-
figurations can be realized. In the theory of graphs
or complex networks, these basic configurations are
called network motifs.
We explore a simple neural model, the Rulkov map

[Rulkov, 2002; Rulkov, Timofeev and Bazhenov,
2004]. Although this model is not explicitly inspired
by physiological processes in the membrane, it is ca-
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pable of generating extraordinary complexity and quite
specific neural dynamics (silence, periodic spiking, and
chaotic bursting), thus replicating to a great extent
most of the experimentally observed regimes [Elson,
Selverston, Huerta, Rulkov, Rabinovich, and Abar-
banel, 1998], including spike adaptation, routes from
silence to bursting mediated by subthreshold oscilla-
tions, emergent bursting, phase and antiphase synchro-
nization with chaos regularization [Rulkov, 2002], and
complete and burst synchronization.

2 The Investigation Model
Each neuron-like Rulkov element is described by the

following system of equations with synaptic coupling
[Rulkov, Timofeev and Bazhenov, 2004]:

xn+1 = f(xn, xn−1, yn + βn),

yn+1 = yn − µ(xn + 1) + µσ + µσn + µAξξn,
(1)

where x and y are fast and slow variables associated
with membrane potential and gating variables, respec-
tively, α, σ and µ ∈ (0, 1] are parameters which regu-
late the system dynamics, ξ is Gaussian noise with zero
mean and unity standard deviation, Aξ is the noise am-
plitude, and f is a piecewise function defined as

f(xn, xn−1, yn) =



α/(1−
−xn) + yn, if xn ≤ 0,

α+ yn, if 0 < xn < α+

yn and xn−1 ≤ 0,

−1, if xn ≥ α+ yn

or xn−1 > 0,
(2)

It is constructed in a way to reproduce different regimes
of neuron-like activity, such as spiking, bursting and
silent regimes.
The parameters βn and σn are defined as

βn = βeIextn + βsynIsynn ,

σn = σeIextn + σsynIsynn ,
(3)

where βe and σe are coefficients used to balance the
effect of external current Iextn defined as

Iexpn =

{
0, n < ts,

A, n ≥ ts,
(4)

βsyn and σsyn are coefficients of chemical synaptic
coupling, and Isynn is a synaptic current given as

Isynn+1 = γIsynn − gsyn ∗

{
(xpost

n − xrp), spikepre,

0, otherwise,
(5)

where gsyn ≥ 0 is the strength of synaptic coupling.
Indexes pre and post correspond to the presynaptic and
postsynaptic variables, γ ∈ [0, 1] is the synaptic relax-
ation time defining a portion of synaptic current pre-
served in the next iteration, and xrp is a reversal po-
tential determining the type of synapse, inhibitory or
excitatory.
In our modeling we take values of the parameters
α = 3.65, σ = 0.06 and µ = 0.0005 so that each
neuron being autonomous demonstrates silent regime
dynamics. Also we assume βe = 0.133, σe = 1.0,
βsyn = 0.1, σsyn = 0.5 and xrp = 0. Investigation
system is a motif of N neurons coupled to each other
with a random coupling strength gsyn and relaxation
time. The values of them are randomly chosen from
0.0 to 0.1 and from 0.0 to 0.5 respectively. In the inves-
tigating system we apply an external stimulus to Na
neurons. Stimulus is a current impulse of the follow-
ing form: from the start it equals to 0, at the moment
ts when we apply it current starts equal to A. The val-
ues of variables are chosen so that without the external
stimulus each neuron is in a silent regime but with start-
ing the application of stimulus excited neurons start pe-
riodically generate spikes.

3 The Analysis
From the system we take signals as time series of fast

variable x from all neurons. Additionally we calculate
signal averaging over all neurons and analyse them. In
figure 1 we can see these signals for systems of 100
neurons for different number of excited neurons. On
them we can see phenomenon of grouping. It consists
in periodically spiking unexcited neurons so that we
can see areas of time on time series (d, e, f) where all
unexcited neurons spike and areas where they all are
silent and these areas periodically follows one by one.
We can notice that for small and big values of Na we
dont see grouping.
We analyse influence of amplitudes of external stim-

ulus and internal noise. In figures 2 and 3 we can see
dependencies of time series of x from these parameters.
Increasing the stimulus amplitude leads to increasing
frequency of grouping and grouping durations and de-
creasing time range between them. Also we can see
decreasing oscillation amplitude of average signal. In-
creasing noise amplitude in its turn leads to decline of
grouping effect, signal starts be more noise-like. Also
we can see oscillations in time area where external am-
plitude A = 0 so noise starts excite neurons.
For analyse phenomena of periodical grouping we

calculate dependencies of signal-to-noise ratio (SNR)
from number of neurons in the system N , number
of excited neurons Na, amplitude of external stimu-
lus A and amplitude of internal noise Aξ. SNR mea-
sured from power spectra of average signal in dB as an
excess of main frequency amplitude over background
noise [Campos-Meja, Pisarchik, and Arroyo-Almanza,
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Figure 1. (Left panel) Time series of average membrane potential
and (right panel) membrane potential of all neurons in the network
of N = 100 neurons, when the stimulus with amplitude A = 1
is applied to (a) Na = 1 neuron, (b) Na = 10 neurons, and (c)
Na = 30 neurons, under noise with amplitude Aξ = 0.1. The
periodic grouping in ISI is observed for Na = 10.
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Figure 2. (Left panel) Time series of average membrane potential
and (right panel) membrane potential of all neurons in the network
of N = 100 neurons, when the stimulus with (a) A = 0.5, (b)
A = 1.5, and (c) A = 2.5 is applied to Na = 10 neurons,
under noise with Aξ = 0.1.
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Figure 3. (Left panel) Average membrane potential and (right
panel) membrane potential of all N = 100 neurons under the in-
fluence of noise with (a) Aξ = 0, (b) Aξ = 1, and (c) Aξ = 2
and stimulus with A = 1 applied to Na = 10 neurons.

2013].
In figure 4, a we can see dependence of SNR from

number of neurons in the system when we excite 10 of

them. At small values of N(< 38) signal-to-noise ratio
is small too but for increasing N from 38 leads to rapid
increasing SNR from 5 to 30 and then it stays near of
this level until N = 140 when SNR starts slowly de-
crease. So for Na = 10 we have optimal values of
N = 38−140 at which SNR takes the highest value. In
figure 4, b we can see dependence of SNR from number
of neurons being applying by external stimulus for sys-
tem of 100 neurons. We can say that optimal values of
Na are from 4 to 18. For this area of Na SNR takes the
highest values. Moving away from it signal-to-noise
ratio value decreases to 0.
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Figure 4. Signal-noise ratio (SNR) versus number of neurons in the
system N (a) for Aξ = 0.1, A = 1.0, Na = 10 and versus
number of neurons being applying by external stimulus Na (b) for
Aξ = 0.1, A = 1.0, N = 100.

Figure 5, a shows signal-to-noise ratio dependence
from external stimulus amplitude, on which we can
see the phenomenon of coherent resonance when for
a certain values of external stimulus amplitude (A =
1.3−1.6) SNR takes the maximum value. For A > 1.6
signal-to-noise ratio takes the same value. Decreasing
external stimulus amplitude from 1.3 to 0 leads to de-
creasing SNR. In figure 5, b we can see influence of
internal noise amplitude to signal-to-noise ratio. For
Aξ = 0.3 SNR takes the maximum value and decreases
to 4 with decreasing Aξ.
To investigate the coherent resonance phenomenon we

plotted the 2-dimensional diagram of SNR from am-
plitudes of external stimulus A and noise Aξ (fig. 6)
on which we can see the areas of coherent resonance
where SNR values are high. These areas of parame-
ters are colored by black. We can see two white areas
(A < 0.2, Aξ < 0.25 and 0.5 < Aξ < 1.0) where
signal-to-noise ratio is the lowest. There are 3 black
areas for 0.8 < A < 1.7 and 0.0 < Aξ < 1.3. Also
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Figure 5. Signal-noise ratio (SNR) versus external stimulus ampli-
tude A (a) for Aξ = 0.1, Na = 10, N = 100 and versus
noise amplitude Aξ (b) for A = 1.0, Na = 10, N = 100.
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Figure 6. Two-parameter diagram of SNR from amplitudes of ex-
ternal stimulus A and noise Aξ . SNR amplitude is defined by color.

we can see that main area of black color is located for
A > 0.5 and Aξ < 2.4. And for A > 1.7 SNR value
does not change for the constant noise amplitude.

4 Conclusion
The macroscopic signal from motif of Rulkov ele-

ments with random coupling between them and internal
noise presence under external stimulus demonstrates
phenomenon of grouping when all unexcited neurons
start spiking periodically during the time interval. And
at the averaging signal from all neurons we see period-
ically grouping. Changing such parameters as number
of neurons in the system, number of excited neurons,
amplitudes of external stimulus and internal noise we
can see phenomenon of coherent resonance when at the
certain values of these parameters signal-to-noise ratio
takes the maximal values.
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