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Abstract
We present a general approach to the paradox of Nico-

lai and related effects analyzed as a singularity of the
stability boundary. We study potential systems with ar-
bitrary degrees of freedom and two coincident eigen-
frequencies disturbed by small non-conservative posi-
tional and damping forces. The instability region is ob-
tained in the form of a cone having a finite discontinu-
ous increase in the general case when arbitrarily small
damping is introduced. This is a new destabilization
phenomenon, which is similar to the effect of the dis-
continuous increase of the combination resonance re-
gion due to addition of infinitesimal damping. Then
we consider the paradox of Nicolai: the instability of
a uniform axisymmetric elastic column loaded by ax-
ial force and a tangential torque. It is shown that the
paradox of Nicolai is related to the conical singularity
of the stability boundary which transforms to a hyper-
boloid with the addition of small dissipation.
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1 Introduction
In 1928 Evgenii L. Nicolai [Nicolai, 1928] formulated

a problem of stability of an elastic column with equal
basic moments of inertia loaded by a tangential torque
and axial force. For the case of cantilever boundary
conditions he found that there is no static form of equi-
librium of the column except the straight one. Then he
studied stability of the straight form of equilibrium us-
ing dynamic method and came to the conclusion that it
is unstable for arbitrary small magnitude of the torque.
This effect is called the paradox of Nicolai. For the
stability study he used a discrete model with a lumped
mass attached to the free end of a massless cantilever
column. In the same paper Nicolai introduced a small
viscous damping and found that it has a stabilizing ef-
fect. In his next paper [Nicolai, 1929], Nicolai intro-

duced geometrical imperfections related to non-equal
basic moments of inertia. He used the same discrete
model for the stability study and came to the conclusion
that the geometrical imperfections are also stabilizing.
That was the beginning of the era of non-conservative
stability problems. An account of the Nicolai papers is
given in [Bolotin, 1963].
In 1950–60’s Bolotin [Bolotin, 1963] and Ziegler

[Ziegler, 1968] explained absence of static forms of
the loss of stability in several contemporary problems
by non-conservative nature of loading leading to dy-
namic forms of instability (flutter). A number of desta-
bilization paradoxes due to dissipation have been dis-
covered in such systems: Ziegler’s destabilization para-
dox, destabilization effect for combination resonance,
destabilization of a Hamiltonian system. Recently,
these destabilization paradoxes have been associated
with generic singularities of the stability boundary, see
e.g., [Seyranian and Mailybaev, 2004; Krechetnikov
and Marsden, 2007]. We continue this list by show-
ing that the paradox of Nicolai is related to the con-
ical singularity of the stability boundary. Singulari-
ties of stability boundaries were analyzed for different
systems by [Arnold, 1978; Mailybaev and Seyranian,
1999a; Mailybaev and Seyranian, 1999b; Mailybaev
and Seyranian, 2001; Seyranian and Mailybaev, 2001].

2 Destabilization of a conservative system by small
circulatory forces

A linear vibrational system of arbitrary dimension
with non-conservative positional forces can be written
in the form

Mq̈+Cq = 0, C = P+N, (1)

where q is the vector of generalized coordinates, M
is the real symmetric positive definite mass matrix, the
real matrices P = PT and N = −NT describe, re-
spectively, potential and nonconservative (also called



Figure 1. (a) The cone singularity of the instability domain in the case of a perturbed conservative system with a double frequency. (b) The
stability boundary for a system with finite damping (bold lines) and infinitesimal damping (thin lines).

circulatory) forces. We study the case of a general
small perturbation M = M0 + δM and C = P0 + δC
of the stable conservative system with a double fre-
quency ω0 > 0. The two linearly independent eigen-
vectors u1 and u2 of the unperturbed system are deter-
mined by the equations and normalization conditions

P0ui = µ0M0ui,

uiM0uj = δij ,

µ0 = ω2
0 , i, j = 1, 2.

(2)

For small perturbations, we derive the asymptotic
destabilization condition as(

a11 − a22
2

)2

+ a12a21 < 0

with aij = uT
i δCuj − ω2

0u
T
i δMuj .

(3)

This inequality determines the internal part of a cone in
the space (a12, a21, (a11 − a22)/2), see Fig. 1(a).
When small damping forces δDq̇ with positive def-

inite symmetric matrix δD are added to the left-hand
side of (1), the instability condition takes the form

(
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+ω2
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(4)

where

d =
d11 + d22

2
,

η1 =
d11 − d22
d11 + d22

, η2 =
2d12

d11 + d22
.

(5)

with the damping coefficients dkj = uT
k δDuj . If

η1 ̸= 0 or η2 ̸= 0, the limiting instability region with
infinitely small damping (d → 0) is larger than the in-
stability region with zero damping given by (3), so that
instability region undergoes a finite (discontinuous) in-
crease, Fig. 1(b). This destabilization phenomenon is
similar to the discontinuous increase of a combination
resonance region due to infinitesimal damping in the
theory of parametric resonance, see, e.g., [Seyranian
and Mailybaev, 2004].

3 Instability of a column loaded by an axial force
and tangential torque

Consider a straight cantilever elastic column of length
l loaded at the free end by a tangential torque L and an
axial force P . The column has variable cross-section
characterized by the mass per unit length m(x), the
matrix of moments of inertia J(x), Young’s modulus
E, the external and internal (the Kelvin–Voigt model)
damping coefficients γ and η. Using variational anal-
ysis we derive the instability condition, similar to (4),
for a straight and twisted equilibrium as

L2 > b21 + b22 + ω2
0(d+ γ/m0)

2/β2, (6)

b1 =
1

2β

∫ l

0

E(δJ11 − δJ22)w
′′2dx,

b2 =
1

β

∫ l

0

EδJ12w
′′2dx,

β =

∫ l

0

w′w′′dx =
w′2(l)

2
,

d = ηEJ0

∫ l

0

w′′2dx,

(7)

where w(x) is the eigenmode evaluated for the uniform
column with m = m0, J = J0δij and L = 0. The in-



stability region is determined by the sum of instability
regions (6) taken for all eigenmodes of the column.
Formula (6) shows that the perfect column with no

damping (b1 = b2 = d = γ = 0) is destabilized
by an arbitrarily small tangential torque L. This ef-
fect is known as the paradox of Nicolai [Nicolai, 1928;
Bolotin, 1963]. The quantities b1 and b2 describe
the effect of geometric imperfections of the column.
When d = γ = 0 (no damping), the instability re-
gion corresponds to the interior of the cone in the space
(b1, b2, L). Addition of damping has stabilizing effect,
which corresponds to the degenerate case η1 = η2 = 0
in (4). As an example, we analyze numerically the case
when a circular cross-section of a uniform column is
slightly changed to elliptic cross-section. A remarkable
feature of this analysis is that the critical axial moment
L is determined by the second mode when only exter-
nal damping is considered.

4 Conclusion
We developed a general approach to the paradox of

Nicolai and related effects analyzed from the point of
view of singularity theory. Geometrical interpretation
of the obtained results is that the boundary of the in-
stability region represents a conical surface in the re-
duced three-dimensional space of nonconservative dis-
turbance parameters. It is shown that damping forces
change the conical instability region to a hyperboloid
with two sheets increasing or decreasing the instability
region. We confirmed and extended the results of Nico-
lai showing that the uniform cantilever column with
equal principal moments of inertia loaded by an ax-
ial force loses stability under the action of an arbitrary
small tangential torque, but it is stabilized by small ge-
ometric imperfections and internal and external damp-
ing forces. The same result holds when the tangential
torque is substituted by the axial torque, since the cor-
responding eigenvalue problems are adjoint.
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