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Abstract
We report results on synchronization processes in

complex networks of spatially extended chaotic sys-
tems. The method of the analysis of the stability of the
network synchronous spatio-temporal state has been
developed. The technique both for the stability analy-
sis of the synchronous state in such systems and for the
spatial master stability function calculation has been
developed. The efficiency of the proposed approach
has been illustrated by the consideration of the com-
plex network of beam-plasma chaotic systems (Pierce
diodes).
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Introduction
The sophisticated collaborative dynamics of inter-

acting elements described by means of complex net-
works become the objects of interest for the broad
scientific community (see (Boccaletti S., Latora V.,
Moreno V., Chavez M., Hwang D.-U., 2006) and refer-
ences therein). Complex networks are objects charac-
terized by a path-length ` scaling logarithmically with
the network size N (` ∝ log N , in contrast to the linear
scaling of regular lattices), but yet a clustering struc-
ture much more prominent than that characterizing a
random graph.
Recently, the dynamics of complex networks has been

extensively investigated with regard to collective (syn-
chronized) behaviors (Boccaletti S., Kurths J.,Osipov
G., Valladares D.L., Zhou C.S., 2002), with special

emphasis on the interplay between complexity in the
overall topology and local dynamical properties of the
coupled units. The usual case considered so far is
that of networks of identical dynamical systems cou-
pled by means of a complex wiring of connections. In
this framework, several studies have shown how to en-
hance synchronization properties, by properly weight-
ing the strengths of the connection wiring (Chavez M.,
Hwang D.-U., Amann A., Hentschel H.G.E., Boc-
caletti S., 2005; Hwang D.-U., Chavez M., Amann A.,
Boccaletti S., 2005; Motter A.E., Zhou C., Kurths J.,
2005; Zhou C., Motter A.E., Kurths J, 2006; Mot-
ter A.E., Zhou C.S., Kurths J., 2005).

At the same time, the majority of works devoted to
complex network synchronization deal with the node
elements characterized by the small number of de-
grees of freedom (Dorogovtesev S.N., Mendes J.F.F.,
2003; Albert R., Barabási A.L., 2002; Watts D.J., 1999;
Watts D. J., Strogatz S., 1998; Belykh I., Belykh V.,
Hasler M., 2004). In this paper we extend the study
of synchronization phenomena in complex networks to
the case of spatially extended coupled dynamical sys-
tems, i.e. networks whose nodes are represented by dy-
namical systems each one of them is described by par-
tial differential equations. This is motivated by the fact
that such a representation seems to be a more adequate
description of many relevant phenomena occurring in
natural systems. The study of such networks allows
to understand better the fundamental aspects of chaotic
synchronization including transition between different
types of synchronous dynamics as well as interrelation
between synchronization of spatially extended systems
and synchronization of the systems with the small num-
ber of degree of freedom.



The consideration of the networks whose nodes are
represented by the microwave beam-plasma systems is
also of interest in connection with the nonlinear an-
tenna technology (Ito H., Mosekilde E. et al., 1993;
Ditto W. L., Spano M. L. et al., 1995; Meadows B.K.,
Heath T.H. et al., 2002). Indeed, the studies of the
synchronous state stability of the active nonlinear an-
tenna module were carried out (Ito H., Mosekilde E. et
al., 1993; Ditto W. L., Spano M. L. et al., 1995; Mead-
ows B.K., Heath T.H. et al., 2002), with the elements
being the nonlinear systems with the small number
of degree of freedom (the radio technical generators
have been considered as the components of the non-
linear antenna). Nevertheless, the use of the spa-
tially extended high-power microwave devices (such as
backward wave oscillators (Bezruchko B.P., Kuznetsov
S.P., Trubetskov D.I., 1979; Ginzburg N.S., Kuznetsov
S.P., Fedoseeva T.N., 1979; Levush B., Antonsen
T.M., Bromborsky A., Lou W.R., Carmel Y., 1992),
Pierce diodes (Godfrey B.B., 1987; Matsumoto H.,
Yokoyama H., Summers D., 1996; Klinger T., Schroder
C., Block D., Greiner F., Piel A., Bonhomme G.,
Naulin V., 2001), klystron generators (Shigaev A.M.,
Dmitriev B.S., Zharkov Yu.D.; Ryskin N.M., 2005),
gyro-devices (Felch K.L., Danly B.G., Jory H.R. et
al, 1999; Nusinovich G.S., Vlasov A.N., Antonsen
T.M., 2001), etc.) as pieces of the nonlinear antenna
is more appropriate for the practical purpose.
So, the consideration of the synchronous dynam-

ics of the network of the spatially extended systems
used as the node elements proves to be of impor-
tance. In our paper such a spatially extended mi-
crowave beam-plasma object as Pierce diode has been
selected as node element, although the developed for-
malism may be easily used to analyze the stability of
the synchronous state of the network with the differ-
ent extended systems. It is important to note that the
Pierce diode is the well studied model of the beam-
plasma systems demonstrating the complex chaotic
oscillations. In particular, the routes to the spatial
chaos (Godfrey B.B., 1987; Matsumoto H., Yokoyama
H., Summers D., 1996), pattern formation (Kuhn S.,
Ender A., 1990; Kolinsky and Schamel, 1995), con-
trolling chaos (Friedel H., Grauer R., Spatschek H.K.,
1998; Klinger T., Schroder C., Block D., Greiner F.,
Piel A., Bonhomme G., Naulin V., 2001; Hramov A.E.,
Rempen I.S., 2004; Hramov A.E., Koronovskii A.A.,
Rempen I.S., 2006) and synchronization(Hur M.S.,
1998; Filatov R.A., Hramov A.A., Koronovskii A.A.,
2006) have been studied in detail for Pierce diode.

1 Pierce diode
Pierce diode (Pierce J.R., 1944; Godfrey B.B., 1987;

Matsumoto H., Yokoyama H., Summers D., 1996)
is one of the simple spatially extended microwave
beam-plasma systems in which the complicated chaotic
dynamics have been observed (Godfrey B.B., 1987;
Kuhn S., Ender A., 1990; Lindsay P.A., Chen X.,

Xu M., 1995; Matsumoto H., Yokoyama H., Sum-
mers D., 1996; Klinger T., Latten A., Piel A., Bon-
homme E., Pierre T., 1997; Hramov A.E., Rempen
I.S., 2004). It consists of two infinite parallel plains
pierced by a mono-energetic electron beam (Fig. 1).
Grids are grounded, with the distance between them be-
ing L. The charge density ρ0 and electron velocity v0

are constant at the system input. The region between
two plains is uniformly filled by neutralizing stationary
ions, with density |ρi| being equal to the non-perturbed
electron beam density |ρ0|.
The dimensionless Pierce parameter α = ωpL/v0

determines the dynamics of the system (here ωp is
the electron beam plasma frequency, v0 is the non-
perturbed electron velocity, L is the distance between
the diode plains). With α > π, the so-called Pierce in-
stability develops in the system and the virtual cathode
is formed in the electron beam (Pierce J.R., 1944; Mat-
sumoto H., Yokoyama H., Summers D., 1996). At
the same time in a narrow range of Pierce parame-
ter values near α ∼ 3π the increase of the instabil-
ity is suppressed by the non-linearity and the regime
without reflection takes place in the electron beam
(Matsumoto H., Yokoyama H., Summers D., 1996;
Trubetskov A.E., Hramov A.E., 2003). In this case
the system behavior may be described by the fluid
equations (Trubetskov A.E., Hramov A.E., 2003; God-
frey B.B., 1987; Matsumoto H., Yokoyama H., Sum-
mers D., 1996). It is known (Godfrey B.B., 1987;
Kuhn S., Ender A., 1990; Lindsay P.A., Chen X.,
Xu M., 1995; Matsumoto H., Yokoyama H., Summers
D., 1996; Hramov A.E., Rempen I.S., 2004) that vari-
ous types of beam-plasma chaotic oscillations may be
observed in this regime.
The behavior of Pierce diode in the fluid electronic ap-

proximation is described by the self-congruent system
of dimensionless Poisson, continuity and motion equa-
tions

∂2ϕ

∂x2
= α2(ρ− 1), (1)

∂ρ

∂t
= −∂(ρv)

∂x
, (2)

v0r0

L

ri

Figure 1. Schematic diagram of Pierce diode



∂v

∂t
= −v

∂v

∂x
− ∂ϕ

∂x
, (3)

with the boundary conditions:

ϕ(0, t) = ϕ(1, t) = 0, ρ(0, t) = 1, v(0, t) = 1,
(4)

where ϕ(x, t) is the dimensionless potential of the elec-
tric field (0 ≤ x ≤ 1), ρ(x, t) and v(x, t) are the di-
mensionless density and velocity of the electron beam,
respectively. The dimensional variables (ϕ′, ρ′, v′, x′,
t′) are connected with the dimensionless ones as

ϕ′ = (v2
0/η)ϕ, ρ′ = ρ0ρ,

v′ = v0v, x′ = Lx, t′ = (L/v0)t, (5)

where η is the specific electron charge, v0 and ρ0 are
the non-perturbed velocity and density of the electron
beam.
The behavior of two Pierce diodes coupled both

unidirectionally and mutually has been considered
in (Filatov R.A., Hramov A.A., Koronovskii A.A.,
2006), with the coupling between systems being re-
alized by the modulation of the dimensionless po-
tential value on the right bound of the systems
(see (Filatov R.A., Hramov A.A., Koronovskii A.A.,
2006; Hramov A.E., Koronovskii A.A., Popov P.V.,
Rempen I.S., 2005) for detail). The synchroniza-
tion of the external harmonic signal (Hur M.S., 1998)
and the different types of chaotic synchronization
(i.e., time scale synchronization (Hramov A.E., Ko-
ronovskii A.A., 2004; Hramov A.E., Koronovskii A.A.,
2005b), generalized synchronization (Rulkov N.F.,
Sushchik M.M., Tsimring L.S., Abarbanel H.D.I.,
1995; Abarbanel H.D.I., Rulkov N.F., Sushchik M.M.,
1996; Hramov A.E., Koronovskii A.A., 2005a;
Hramov A.E., Koronovskii A.A., Popov P.V., 2005),
lag-synchronization (Rosenblum M.G., Pikovsky A.S.,
Kurths J., 1997; Taherion S., Lai Y.C., 1999) and com-
plete synchronization (Pecora L.M., Carroll T.L., 1990;
Pecora L.M., Carroll T.L., 1991)) have been observed
for the considered system (Filatov R.A., Hramov A.A.,
Koronovskii A.A., 2006). Therefore, it seems to be
likely that the network consisting of Pierce diodes may
show the synchronous dynamics under the certain con-
ditions, if the diodes are coupled in the same way, i.e.,
by the modulation of the potential value on the right
bound of each system. The detailed description of such
a network as well as the method of the analysis of the
synchronous state stability are given in the next section.

2 Stability of the synchronous state of complex
network consisting of spatially extended systems

Let us consider the network of N Pierce diodes
used as the node elements. The behavior of the

i-th node of the network is described by the state
Ui(x, t) = (ϕi(x, t), ρi(x, t), vi(x, t))T , with the di-
mensionless potential ϕi(x, t) of the electric field, den-
sity ρi(x, t) and velocity vi(x, t) of the electron beam
being described by equations (1)–(3). Let us denote the
evolution operator (1)–(3) of the i-th node as

L̂(Ui) = 0. (6)

The influence of links between nodes of the net-
work results in the variation of the potential value
ϕi(1, t) on the right boundary of i-th Pierce diode
(see (Filatov R.A., Hramov A.A., Koronovskii A.A.,
2006; Hramov A.E., Koronovskii A.A., Popov P.V.,
Rempen I.S., 2005) for detail) according to the states
of the another node elements

ϕi(1, t) = −σ

N∑

j=1

Gijρj(1, t), (7)

where σ is the coupling strength of links between
nodes, ρj(1, t) is the dimensionless electron beam den-
sity in the point with the coordinate x = 1 correspond-
ing to the output grid of j-th Pierce diode. G is the
Laplacian matrix of the network. As so, it is a sym-
metric zero row sum matrix, it has a real spectrum of
eigenvalues λ1 ≥ · · · ≥ λN , Gij (i 6= j) is equal to 1
whenever node i is connected with node j and 0 other-
wise, and Gii = −∑

j 6=i Gij .
If the network elements demonstrate the complete

synchronization regime the states of all Pierce diodes
coincide with each other Ui(x, t) = Us(x, t),∀i,
with the boundary condition (7) taking the form
ϕi(1, t) = ϕs(1, t) = 0, ∀i. One can see that the in-
teraction between the node elements of the network
is vanishingly small for the complete synchronization
regime.
With the small perturbation ξ = (ξϕ, ξρ, ξv)T of the

synchronous state Us existing, the behavior of the i-th
node of the network is described by equation

L̂(Us + ξi) = 0 (8)

with the boundary conditions

ϕi(1, t) + ξϕ
i (1, t) = −σ

N∑
j=1

Gij

(
ρj(1, t) + ξρ

j (1, t)
)
,

ρi(0, t) + ξρ
i (0, t) = 1,

vi(0, t) + ξv
i (0, t) = 1.

(9)
Taking into account the vanishingly small values of

the perturbations of the synchronous state Us the evo-
lution operator (6) may be rewritten as

∂L̂(Us, ξi) = 0, (10)



where ∂L̂(Us, ξi) is the linearization of the evolution
operator L̂(·) in the vicinity of the synchronous state
Us(x, t), therefore, it is linear for the perturbation
ξ(x, t). For the considered Pierce diode model the lin-
earized operator ∂L̂(Us, ξ) is

∂2ξϕ

∂x2
= α2ξρ,

∂ξρ

∂t
= −ξρ ∂vs

∂x
− vs

∂ξρ

∂x
− ξv ∂ρs

∂x
− ρs

∂ξv

∂x
,

∂ξv

∂t
= −vs

∂ξv

∂x
− ξv ∂vs

∂x
− ∂ξϕ

∂x

(11)

According to (4) and (9) the boundary conditions for
the perturbation ξi take the form

ξϕ
i (1, t) = −σ

N∑
j=1

Gijξ
ρ
j (1, t),

ξρ
i (0, t) = 0,

ξv(0, t) = 0.

(12)

Obviously, the matrix G determining the structure of
the links between nodes of the network may be trans-
formed to the diagonal form

G̃ =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN


 , (13)

and the stability of the synchronous state [Ui(x, t) =
Us(x, t), ∀i] is determined by the N evolution opera-
tors

∂L̂(Us, ςi) = 0 (14)

with the boundary conditions

ςϕ
i (1, t) = −σλiς

ρ
i (1, t),

ςρ
i (0, t) = 0,

ςv
i (0, t) = 0.

(15)

Equations (14) and (15) differ from each other only by
the eigenvalues λ1 ≥ · · · ≥ λN of the coupling matrix
G.
The synchronous state [Ui(x, t) = Us(x, t), ∀i] is

stable if all perturbations ςi decrease. For the system
with the small number of degrees of freedom the sta-
bility of the synchronous state of the network may be
analyzed by means of the largest Lyapunov exponent
[also called master stability function (Pecora L.M.,
Carroll T.L., 1998)]. In this paper (see Sec. 3) we pro-
pose the quantity allowing to characterize the stabil-
ity of the spatially extended system called as spatial

master stability function (SMSF). As it will be shown
below SMSF is similar to the largest Lyapunov expo-
nent in the system with the small number of degrees
of freedom. Replacing (−σλi) by ν in equation (15),
the behavior of SMSF Λ vs ν completely accounts for
the linear stability of the synchronized state. Indeed,
the synchronized state associated with λ1 = 0 is stable
when all the remaining equations (14) with the bound-
ary conditions (15) related with the other eigenvalues
λi (i = 2, . . . , N ) of the coupling matrix G are char-
acterized by the negative SMSF. So, to analyze the sta-
bility of the synchronized state Us(x, t) of the network
only one equation

∂L̂(Us, ς) = 0 (16)

from (14) with the parametric boundary conditions

ςϕ(1, t) = νςρ
i (1, t),

ςρ(0, t) = 0,
ςv(0, t) = 0.

(17)

should be considered to obtain the dependence of the
SMSF Λ on the parameter ν. Furthermore, the syn-
chronous state Us(x, t) may be obtained as a solution
of the evolution equation (6) with the boundary condi-
tions (4).
It seems likely that SMSF Λ(ν) may be negative for

a finite interval of ν-parameter values Ist = (ν1; ν2)
or for an infinite one (ν2 = ∞) just as the largest
Lyapunov exponent does in (Pecora L.M., Carroll T.L.,
1998). The stability condition is satisfied if the whole
set of eigenvalues λi (i = 2, . . . , N ) multiplied by the
same σ falls into the stability interval Ist, i.e., when
conditions σ|λ2| > ν1 and σ|λN | < ν2 take place si-
multaneously. The equations describing the node ele-
ment evolution and boundary conditions are determin-
ing the borders ν1 and ν2 of the stability interval Ist,
while the eigenvalue distribution is solely ruled by the
topology of the imposed wiring of connections.

3 Spatial master stability function
To analyze the stability state of the network described

above we need to have the quantitative characteristic
being similar to the largest Lyapunov exponent which
is applicable to the spatially extended systems. It seems
to be enticing and promising to use the averaged rate
of the divergence of the initial close states for the de-
scription of the dynamics of the spatially extended sys-
tems in the same way as the maximum Lyapunov ex-
ponent is used for the systems with the small num-
ber of degrees of freedom. The attempts of using the
concept of the largest Lyapunov exponent for the spa-
tially extended system analysis are usually reduced to
the calculation of the Lyapunov exponent in the tradi-
tional way. One of the possible methods is the calcu-
lation of the maximum Lyapunov exponent from the



time series obtained in one point of the extended sys-
tem using technique developed for the system with the
small number of degrees of freedom (Wolf A., Swift J.,
Swinney H.L., Vastano J., 1985). Alternatively, some-
one can calculate the spectrum of the Lyapunov ex-
ponents by means of Benettin algorithm (Benettin G.,
Galgani L., Giorgilli A., Strelcyn J.-M., 1980) using the
discrete model of the extended system calculated with
the help of the computer simulations. In this case some
points of the space grid are selected as basis for the
Lyapunov exponent to be calculated. The variables de-
scribing the system taken in these points are considered
as components of vector state in the phase space.
In our paper we propose the quantitative characteris-

tic called spatial master stability function to describe
the extended systems. Let the considered spatially ex-
tended system be characterized by the state U(x, t0) in
the moment of time t0 (x is the spatial coordinate vec-
tor). The distance S(U1,U2) between two different
states of the system may be defined as

S(U1,U2) =




∫

V

‖U1(x)−U2(x)‖2 dV




1/2

,

(18)
where the integration is carried out on the space V of
the extended system.
Let us consider the evolution of two systems with

close (but different) initial conditions U0(x, t0) and
Ũ0(x, t0) = U0(x, t0) + ξ̃(x), where ξ̃(x) is the ran-
dom function, S(U0, Ũ0) = ε, with ε being vanish-
ingly small. These two states evolve to U1(x) and
Ũ1(x) in time t0 + T , respectively. The relation
S(U1, Ũ1)/ε describes the growth (decay) of the per-
turbation ξ̃(x) during the time interval T .
Let us redefine the perturbed state Ũ1(x) in such

a way for its deviation from the non-perturbed one
U1(x) be equal to the initial value ε: Ũ0

1(x) =
εŨ1/S(U1, Ũ1). Repeating this algorithm M times
one can find the variation of the perturbation for M it-
eration

PM =
M∏

k=1

S(Rk, R̃k)/ε. (19)

The value of the spatial master stability function is
given by

Λ =
1

MT
ln PM =

1
MT

M∑

k=1

ln
S(Rk, R̃k)

ε
. (20)

SMSF (20) is positive if the small perturbation ξ̃(x)
brought into system increases with time, otherwise it is
negative (the small perturbation decreases) or zero (the
distance between perturbed and non-perturbed states of
the system remains constant).
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Figure 2. (Color online) The dependencies of SMSF on parameter
ν for α1 = 2.858 (curve 1) and α2 = 2.864 (curve 2). In the
region of the negative values of ν-parameter SMSF dependencies are
positive for both the α1,2 control parameter values and all values of
ν

The proposed spatial master stability function allows
to describe the extended system behavior as well as the
maximum Lyapunov exponent does it for the system
with the small number of degrees of freedom. Ob-
viously, it may be used both for distinguishing the
chaotic and regular dynamics of extended systems and
for the analyzing stability of system states (e.g., un-
stable periodic states in the extended system play-
ing the role of the unstable periodic orbits embedded
into chaotic attractor (Hramov A.E., Koronovskii A.A.,
Rempen I.S., 2006)).
Evidently, SMSF may be used to characterize the sta-

bility of the synchronous state of the network with
nodes represented by the spatially extended systems
like Pierce diode. The analysis of the stability of the
synchronous state [Ui(x, t) = Us(x, t), ∀i] of network
described in Sec. 2 will be given below.

4 Numerical results
In this section we consider the numerical results con-

cerning the dynamics of the network of Pierce diodes.
We consider two parameter values of node element,
i.e. α1 = 2.858 and α2 = 2.864 correspond-
ing to different regimes of chaotic behavior of Pierce
diode (Filatov R.A., Hramov A.A., Koronovskii A.A.,
2006). The dependencies of SMSF on the parameter ν
are shown in Fig. 2 for two selected values of Pierce pa-
rameter α. Based on these dependencies one can eas-
ily predict the region of the coupling strength values
where the complex network of Pierce diodes (with dif-
ferent topology of links between nodes) demonstrates
the complete synchronization regime.
Two mutually coupled Pierce diodes being the sim-

plest network, let us start our analysis from this ele-
mentary case. Evidently, such a system may be con-
sidered as the simplest network with the node elements
U1,2 and the coupling matrix

G =
(−1 1

1 −1

)
. (21)
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Figure 3. The synchronization error 〈E〉 (see the text of work for
detail) vs the coupling strength σ for the two mutually coupled Pierce
diodes with α1 = 2.858 (a) and α2 = 2.864 (b). The theo-
retical predictions of the synchronization regime areas based on the
consideration of SMSF are shown by the gray rectangles.

It is known (see (Filatov R.A., Hramov A.A., Ko-
ronovskii A.A., 2006)) that two mutually coupled
Pierce diodes show the complete synchronization
regime if the coupling strength exceeds the threshold
value σα1

c = 0.09 for α1 and σα2
c = 0.05 for α2, re-

spectively. It is easy to see that the eigenvalues of G
are λ1 = 0 and λ2 = −2. Therefore, in this case the
ν-parameter is equal to 2σ.
One can see from Fig. 2 that SMSF becomes neg-

ative when the condition ν ≈ 2σα1
c is satisfied if

the value of Pierce parameter is α1. Similarly, if the
Pierce parameter value is α2 SMSF crosses zero in
the point ν ≈ 2σα2

c . In other words, two mutu-
ally coupled Pierce diodes demonstrate the complete
synchronization regime when SMSF is negative. No-
tice, the dependence of SMSF is negative only for
the values of ν-parameter belonging to the interval
(να1,2

1 , ν
α1,2
2 ), να1

1 ≈ 0.18, να1
2 ≈ 0.99, να2

1 ≈ 0.1,
να2
2 ≈ 1.5. Therefore, if the coupling strength σ ex-

ceeds σ
α1,2
2 = ν

α1,2
2 /|λ2|, the complete synchroniza-

tion regime of two mutually coupled Pierce diode is
also destroyed. For the selected values of Pierce pa-
rameter α1,2 the upper boundaries of the synchronous
regime are σα1

2 = 0.495 and σα2
2 = 0.750, respec-

tively.
So, the numerical calculation of SMSF allows to find

the region of the coupling strength values correspond-
ing to the complete synchronization regime of two cou-
pled Pierce diodes. Moreover, the same dependence al-
lows also to describe the stability of the synchronous
state of the network consisting of the large number of
Pierce diodes.
In order to show that the spatial master stability func-

tion formalism is valid and gives the correct results,
the direct numerical simulation of the Pierce diode net-
works with the different control parameters has been
carried out. This calculations allow to find the bound-
aries of the stability of the synchronous regime and to
compare them with the analogous ones obtained above
by means of SMSF consideration.
In the direct simulations of the dynamics of coupled

Pierce diodes, the appearance of a synchronous state
can be monitored by looking at the vanishing of the
time average (over a window T ) synchronization er-

 0.0
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 0.2

<E>
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Figure 4. The synchronization error 〈E〉 vs the coupling strength
σ for the network consisting of 70 coupled Pierce diodes with Pierce
parameter α2 = 2.864. The theoretical predictions of the synchro-
nization regime area based on the consideration of SMSF is shown
by the gray rectangle.

ror 〈E〉, as well as in the case of the complex network
with the node elements characterized by the small num-
ber of degrees of freedom (Hwang D.-U., Chavez M.,
Amann A., Boccaletti S., 2005),

〈E〉 =
1

T (N − 1)

∑

j>1

t+T∫

t

ej,1(t′) dt′. (22)

Here ei,j(t) =
1∫
0

(|ϕi − ϕj |+ |ρi − ρj |+ |vi − vj |)dx

is the instantaneous spatially averaged synchronization
error between states Ui,j(x, t) of two coupled Pierce
diodes placed in the network nodes with numbers i and
j, respectively.
Obviously, for two coupled Pierce diodes the synchro-

nization error (22) may be rewritten as

〈E〉 =
1
T

t+T∫

t

e2,1(t′) dt′. (23)

The synchronization errors 〈E〉 obtained for two
unidirectionally coupled Pierce diodes are shown in
Fig. 3, a,b. One can see that the coupling strength
values σ

α1,2
1,2 corresponding to the destruction of the

complete synchronization regime are in the excellent
agreement with the theoretical predictions obtained by
means of SMSF consideration for both values of the
Pierce parameter α1,2.
We have also considered the complex network con-

sisting of 70 Pierce diodes with the random symmetric
zero row sum coupling matrix G. Since the distinction
in the Pierce parameter values α1 and α2 does not cause
the qualitative difference in the SMSF dependence on
the ν-parameter (see Fig. 2), only one dependence of
the synchronization error 〈E〉 on the coupling strength
σ (for the value α2 = 2.864) is given in this work in
Fig. 4. The minimal non-zero eigenvalue of the cou-
pling matrix G is λ70 = −46.06, the maximal one
— λ2 = −24.42. The synchronous regime for such
a network should be observed in the range of the cou-
pling strength values σ ∈ (0.0041; 0.0326). The syn-
chronization error for this complex network is shown in



Fig. 4, the coupling strength value range σ ∈ (σ1; σ2)
σ1 = 0.0043 and σ2 = 0.0325 where the complete
synchronization regime takes place being shown by the
gray rectangle.
Evidently, the remarkable consistency between

boundaries of synchronization obtained by means of
the SMSF consideration and direct numerical calcula-
tions of the network dynamics is also observed as well
as in the case of two mutually coupled Pierce diodes
described above.
In conclusion, we have considered the synchroniza-

tion processes in the complex networks of spatially ex-
tended chaotic systems. The technique both for the sta-
bility analysis of the synchronous state in such systems
and for the spatial master stability function calculation
has been developed. The efficiency of the proposed ap-
proach has been illustrated by the consideration of the
complex network of Pierce diodes.

Acknowledgements
This work has been supported by RFBR (projects 08-

02-90002-Bel-a and 07-02-00044) and the Supporting
program of leading Russian scientific schools (project
NSh–355.2008.2) and Doctor of Science (project MD-
1884.2007.2). We thank also “Dynasty” Foundation.

References
Abarbanel H.D.I., Rulkov N.F., Sushchik M.M. (1996).

Generalized synchronization of chaos: The auxiliary
system approach. Phys. Rev. E 53(5), 4528–4535.

Albert R., Barabási A.L. (2002). Rev. Mod. Phys.
Belykh I., Belykh V., Hasler M. (2004). Blinking

model and synchronization in small-world networks
with a time-varying coupling. Physica D 195(1–
2), 188–206.

Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M.
(1980). Lyapunov characteristic exponents for smooth
dynamical systems and for hamiltonian systems: A
method for computing all of them. p. i. theory. p. ii.
numerical application. Meccanica 15, 9–30.

Bezruchko B.P., Kuznetsov S.P., Trubetskov D.I.
(1979). JETP Lett. 29, 162.

Boccaletti S., Kurths J.,Osipov G., Valladares D.L.,
Zhou C.S. (2002). The synchronization of chaotic sys-
tems. Physics Reports 366, 1–101.

Boccaletti S., Latora V., Moreno V., Chavez M.,
Hwang D.-U. (2006). Complex networks: Structure
and dynamics. Physics Reports 424, 175–308.

Chavez M., Hwang D.-U., Amann A.,
Hentschel H.G.E., Boccaletti S. (2005). Syn-
chronization is enhanced in weighted complex
networks. Phys. Rev. Lett. 94, 218701.

Ditto W. L., Spano M. L. et al. (1995). Physica D 86(1-
2), 198–211.

Dorogovtesev S.N., Mendes J.F.F. (2003). Evolution of
networks. Oxford University Press.

Felch K.L., Danly B.G., Jory H.R. et al (1999). Char-

acteristics and applications of fast–wave gyrodevices.
Proceedings IEEE 87(5), 752.

Filatov R.A., Hramov A.A., Koronovskii A.A. (2006).
Chaotic synchronization in coupled spatially extended
beam-plasma systems. Phys. Lett. A 358, 301–308.

Friedel H., Grauer R., Spatschek H.K. (1998). Con-
tolling chaotic ststes of a Pierce diode. Physics of
plasmas 5(9), 3187–3194.

Ginzburg N.S., Kuznetsov S.P., Fedoseeva T.N. (1979).
Radiophys. Quantum Electron 21, 728.

Godfrey B.B. (1987). Oscillatory nonlinear electron
flow in Pierce diode. Phys. Fluids 30, 1553.

Hramov A.E., Koronovskii A.A. (2004). An approach
to chaotic synchronization. Chaos 14(3), 603–610.

Hramov A.E., Koronovskii A.A. (2005a). Generalized
synchronization: a modified system approach. Phys.
Rev. E 71(6), 067201.

Hramov A.E., Koronovskii A.A. (2005b). Time scale
synchronization of chaotic oscillators. Physica D
206(3–4), 252–264.

Hramov A.E., Koronovskii A.A., Popov P.V. (2005).
Generalized synchronization in coupled ginzburg–
landau equations and mechanisms of its arising. Phys.
Rev. E 72(3), 037201.

Hramov A.E., Koronovskii A.A., Popov P.V., Rem-
pen I.S. (2005). Chaotic synchronization of coupled
electron-wave systems with backward waves. Chaos
15(1), 013705.

Hramov A.E., Koronovskii A.A., Rempen I.S. (2006).
Controlling chaos in spatially extended beam-plasma
system by the continuous delayed feedback. Chaos
16(1), 013123.

Hramov A.E., Rempen I.S. (2004). Investigation of the
complex dynamics and regime control in Pierce diode
with the delay feedback. Int. J. Electronics 91(1), 1–
12.

Hur M.S., Lee H.J., Lee J.K. (1998). Parametrization
of nonlinear and chaotic oscillations in driven beam-
plasma diodes. Phys. Rev. E 58(1), 936–941.

Hwang D.-U., Chavez M., Amann A., Boccaletti S.
(2005). Synchronization in complex networks with
age ordering. Phys. Rev. Lett. 94, 138701.

Ito H., Mosekilde E. et al. (1993). Trans. Inst. Elect.
Eng. Jpn. A 113-A(5), 365–371.

Klinger T., Latten A., Piel A., Bonhomme E., Pierre T.
(1997). Chaos and turbulence studies in low–β plas-
mas. Plasma Phys. Control. Fusion 39, B145.

Klinger T., Schroder C., Block D., Greiner F., Piel A.,
Bonhomme G., Naulin V. (2001). Chaos control and
taming of turbulence in plasma devices. Phys.Plasmas
8(5), 1961–1968.

Kolinsky, Heidrun and Hans Schamel (1995). Coun-
terstreaming electrons and ions in pierce-like diodes.
Phys. Rev. E 52(4), 4267–4280.

Kuhn S., Ender A. (1990). Oscillatory nonlinear flow
and coherent structures in Pierce–type diodes. J. Appl.
Phys. 68, 732.

Levush B., Antonsen T.M., Bromborsky A., Lou W.R.,
Carmel Y. (1992). Theory of relativistic backward



wave oscillator with end reflections. IEEE Trans.
Plasma Sci. 20(3), 263.

Lindsay P.A., Chen X., Xu M. (1995). Plasma–
electromagnetic field interaction and chaos. Int. J.
Electronics 79, 237.

Matsumoto H., Yokoyama H., Summers D. (1996).
Computer simulations of the chaotic dynamics of
the Pierce beam–plasma system. Phys. Plasmas
3(1), 177.

Meadows B.K., Heath T.H. et al. (2002). Proceedings
of the IEEE 90(5), 882.

Motter A.E., Zhou C., Kurths J. (2005). Network syn-
chronization, diffusion, and the paradox of hetero-
geneity. Phys. Rev. E 71(1), 016116.

Motter A.E., Zhou C.S., Kurths J. (2005). Enhancing
complex-network synchronization. Europhysics Let-
ters 69(3), 334–340.

Nusinovich G.S., Vlasov A.N., Antonsen T.M. (2001).
Nonstationary phenomena in tapered gyro-backward-
wave oscillators. Phys.Rev.Lett. 87(21), 218301.

Pecora L.M., Carroll T.L. (1990). Synchronisation in
chaotic systems. Phys. Rev. Lett. 64(8), 821–824.

Pecora L.M., Carroll T.L. (1991). Driving systems with
chaotic signals. Phys. Rev. A 44(4), 2374–2383.

Pecora L.M., Carroll T.L. (1998). Master stability func-
tions for synchronized coupled systems. Phys. Rev.
Lett. 80(10), 2109–2112.

Pierce J.R. (1944). Limiting currents in electron beam
in presence ions. J. Appl. Phys. 15, 721.

Rosenblum M.G., Pikovsky A.S., Kurths J. (1997).
From phase to lag synchronization in coupled chaotic
oscillators. Phys. Rev. Lett. 78(22), 4193–4196.

Rulkov N.F., Sushchik M.M., Tsimring L.S., Abar-
banel H.D.I. (1995). Generalized synchronization of
chaos in directionally coupled chaotic systems. Phys.
Rev. E 51(2), 980–994.

Shigaev A.M., Dmitriev B.S., Zharkov Yu.D.;
Ryskin N.M. (2005). Chaotic dynamics of delayed
feedback klystron oscillator and its control by exter-
nal signal. IEEE Transactions on Electron Devices
52(5), 790–797.

Taherion S., Lai Y.C. (1999). Observability of lag syn-
chronization of coupled chaotic oscillators. Phys. Rev.
E 59(6), R6247–R6250.

Trubetskov A.E., Hramov A.E. (2003). Lectures on mi-
crowave electronics for physicists (In Russian). Vol. 1.
Fizmatlit, Moscow.

Watts D. J., Strogatz S. (1998). Nature (London).
Watts D.J. (1999). Small Worlds: The Dynamics of

Networks between Order and Randomness. Princeton
University Press, Princeton.

Wolf A., Swift J., Swinney H.L., Vastano J. (1985).
Determining lyapunov exponents from a time series.
Physica D 34(6), 4971–4979.

Zhou C., Motter A.E., Kurths J (2006). Universality
in the synchronization of weighted random networks.
Phys. Rev. Lett. 96(3), 034101.


