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Abstract
In this paper, a synchronization and formation control

for groups of mobile robots of unicycle structure under
the behavior-based approach is presented. According
to this approach, complex maneuvers are decomposed
into a sequence of maneuvers between formation pat-
terns. With the aim of driving the movements of the
robots, a decentralized control strategy based on feed-
back linearization and Adaptive Super Twisting Algo-
rithm (ASTA) are introduced. The proposed control
scheme increases robustness against unknown dynam-
ics without overestimating the gain. Simulation results
illustrate the effectiveness of the proposed control.
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1 INTRODUCTION
Applications of robotics in daily life are being in-

creased enormously, for example service robots for
cleaning [Yuan, 2011] or transporting [Tsay, 2003]. In
case of cleaning robots, a large area involved can be
cleaned faster by a set of robots instead of a single
robot.
Formation and coordinated motion control have

attracted considerable attention as there task that can
be performed more efficiently by a group of robots,
such as surveillance, exploration, search and rescue.
These cooperative works involve robots moving with a
definite formation to maximize detection capabilities
and at the same time changing their formation in case
of malfunction from an agent. Besides, the robots
process the information captured by each one of
the agents and can change their formation patterns.
Moving large objects represents another example
of coordinated tasks, where the robots move main-
taining a rigid formation to displace the oversize object.

In the last years, several approaches have been pro-
posed to solve the problem of formation control and co-
ordinated movement control, such as the virtual struc-
ture method, which considers the whole system as a
single rigid structure or entity and then the desired path
is assigned to the structure while maintaining a rigid
formation [Ren, 2004]. The leader-follower method
consists in designing a robot as the leader responsible
for guiding all the other robots involved in the forma-
tion, in such a way that they reach their desired posi-
tions and keep the composed formation while moving
[Brandao, 2009].
The behavior-based methods, where desired behaviors

are prescribed for each robot and the final action is de-
rived from a weighting of the relative importance of
each behavior [Lawton, 2003]. The basic concept of
the potential field methods is to fill the workspace of the
robots with an artificial potential field where the robot
is attracted to the target position and then is repelled
from obstacles [Zheng, 2011]. Sliding modes control
approach is used in many applications; enabling high
gain accuracy tracking and insensitivity to disturbances
and plant parameter variations in nonlinear systems.
Super-Twisting Algorithm is a control based on sliding
modes technique, which is designed to converge in a
finite-time and ensures robustness under uncertainties.
However, STA controller needs to know the bounds of
uncertainties and perturbations present on the system.
This paper concerns to the formation control of a

group of mobile robots, through the coupled dynamics
methodology based on a behavior strategy. To deal
with the formation problem, a composed control
approach based on feedback linearization and adaptive
super twisting control algorithm is proposed. This
scheme improves robustness as the bounds of un-
certainties and perturbations are not necessary to be
known.

This paper is organized as follows: Section 2 is de-
voted to a system description and the analysis of a
mathematical model from a mobile robot. In section



3, an Adaptive Super-Twisting Control is derived with
the aim of providing robustness under non-modeled
dynamics and parametric uncertainties. In section 4,
the formation control problem as motion between a
sequence of formation patterns and the corresponding
coupled dynamics control is addressed. Simulation re-
sults are given in section 5, with the aim of illustrat-
ing the feasibility and performance of the proposed
scheme. Finally, conclusions of this work are drawn.

2 DYNAMICAL MODEL OF A DIFFEREN-
TIAL DRIVE MOBILE ROBOT

Unicycle mobile robots (Fig. 1) have high mobil-
ity, combining a high traction by using pneumatic tires
while having simple wheel configuration. This paper
considers the model proposed by [Zhang,1998], assum-
ing null the uncertainties vector and the moment of in-
ertia combination of the rotor motor, gear and wheel.
Besides, the center of mass is considered as located in
the center of the line joining the wheels.
Then, the model of theith-robot of multi robot system

is considered as follows
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whereri = (rxi, ryi)
T is the inertial position of thei-

th robot,θi is the orientation,vi is the linear speed,ωi

is the angular speed,Fi andτi are the force and torque
applied at the center of the line connecting the wheels.
mi is the mass, andJi is the moment of inertia. Now,
the equations of motion (1) can be written as

Xi = f(Xi) + giui (2)

whereXi = (rxi, ryi, θi, vi, ωi), ui = (Fi, τi)
T , f(·)

andg(·) can be deduce from (1).
In this work, the robot hand position formation con-

trol will be considered. Hand position can be defined
as a point located a distanceLi along the line that is
perpendicular to the wheel axis and intersectsri. Thus,
the hand position is given by

Πi = ri + Li

(
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)

(3)

Taking the derivative of (3) with respect to time, it fol-
lows that
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From the second derivative of (3) we have
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the system (2) has constant relative degree equals 2,
and can be output feedback linearized about the hand
position [Lawton, 2003]. With this aim, define the map
ϕ : ℜ5 → ℜ5 as
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where its inverse is given by
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Equations (2)-(3) can be written in the transformated
coordinates as
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From the output feedback linearizing control given by
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it follows that
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Last equation denotes the internal dynamics which
are rendered non-observable and uncontrollable by the
transformation (6). The zero dynamics are found by
settingζ1i, ζ2i, ..., ζ4i = 0 and thenζ̇5i = 0, having
stable zero dynamics, but not asymptotically stable. As
ζ5i = θi and (ζ3i, ζ4i)T represent the velocity of the
hand position, this implies that the angleθi will stop
moving when the hand position stops moving. Here-
after, the input-output dynamics of each robot will be
represented by the double integrator system

Π̈i = vi (11)

Owing to parameters variations, uncertainties and non-
modeled dynamics, model (10) is an approximation of
the behavior from the real system, to deal with this
problem it is necessary to consider the design of robust
control laws. With this aim, next section address the
synthesis of robust controllers forvi, based on Adap-
tive Super-Twisting Approach.

Figure 1: Differential-drive Mobile Robot.

3 ADAPTIVE SUPER-TWISTING CONTROL
ALGORITHM

In this section, the synthesis of control law based
on a super-twisting adaptive control algorithm, which
has been proposed in [Shtessel, 2012], is presented.
Furthermore, the bounds of uncertainties and pertur-
bations present on the system do not require to be
known. The gains of the controller are adapted in
order to attenuate the chattering and do not require

to know the bounds of the uncertainties. The main
advantage of such algorithm is that it reduce the
chattering and increase the robustness of the high
order sliding mode approach. The controller designed
ensure its convergence in a finite-time and augment the
robustness of the system under uncertainties.

Now, consider the super-twisting control algorithm
(see [Levant, 2003]), which is given by

u = −K1|s|
1/2sign(s) + υ,

υ̇ = −K2sign(s), (12)

whereu represents the control signal,K1,K2 are the
control gains ands is a sliding variable.

From the adaptive super-twisting control algorithm
(ASTA) approach, the gainsK1 andK2 are chosen
such that they are functions of the sliding surface dy-
namics as follows

K1 = K1(t, s, ṡ) , K2 = K2(t, s, ṡ). (13)

Now, in order to design an adaptive super-twisting con-
trol for the uncertain nonlinear system

ẋ = f(x, t) + g(x, t)u, (14)

wherex ∈ ℜN is the state,u ∈ ℜ the control input,
f(x, t) ∈ ℜN is a continuous function.

We introduce the following assumptions.

Assumption B1.The sliding variables = s(x, t) ∈ ℜ
is designed so that the desired compensated dynamics
of the system (14) are achieved in the sliding mode
s = s(x, t) = 0.

Assumption B2. The relative degree of the system
(14) with the sliding variables(x, t) with respect tou
is equal to1, and the internal dynamics are stable.

Then, the dynamics of the sliding variables are given
by

ṡ = a(x, t) + b(x, t)u. (15)

wherea(x, t) = ∂s
∂t +

∂s
∂xf(x, t), b(x, t) =

∂s
∂xg(x).

Assumption B3. The functionb(x, t) ∈ ℜ is un-
known and different to zero∀x andt ∈ [0,∞). Fur-
thermore,b(x, t) = b0(x, t) + ∆b(x, t), whereb0(x, t)
is the nominal part ofb(x, t) which is known, and
there existsδ1 an unknown positive constant such that
∆b(x, t) satisfies
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Assumption B4.There existsδ2 an unknown positive
constant such that the derivative of functiona(x, t) is
bounded

|ȧ(x, t)| ≤ δ2. (16)

The objective of the ASTA approach is to design a
continuous control without overestimating the gain, to
drive the sliding variables and its derivativės to zero
in finite time, under boundary disturbances of type
additives and multiplicatives with unknown boundsδ1
andδ2.

Then, the closed loop system (15) becomes

ṡ = a(x, t)−K1b(x, t)|s|
1/2sign(s) + b(x, t)υ,

υ̇ = −K2sign(s), (17)

Furthermore, consider the following change of vari-
able

ς = (ς1, ς2)
T = (|s|

1/2
sign(s), b(x, t)υ + a(x, t))T ,

(18)
Then, the system (15) can be written as

ς̇ = Ã(ς1)ς + g̃(ς1)̺(x, t), (19)

where

Ã(ς1) =
1
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)
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where ¯̺(x, t) = ḃ(x, t)υ + ȧ(x, t) = 2̺(x, t) ς1
|ς1|

. To
prove the closed loop stability of the system,

Assumption B5. ḃ(x, t)υ is bounded with unknown
boundaryδ3 i.e. | ḃ(x, t)υ |< δ3.

Then, system can be rewritten as follows

ς̇ = Ā(ς1)ς, Ā(ς1) =
1

|ς1|

(

−b
2
(x, t)K1

1

2

̺(x, t)− b(x, t)K2 0

)

(20)
where |ς1| = |s|

1/2, it is appealing to consider the
quadratic function

V0 = ςT P̃ ς, (21)

whereP̃ is a constant, symmetric and positive matrix,
as a strict Lyapunov candidate function for (12). Taking
its derivative along the trajectories of (12), we have

V̇0 = − |s|
−1/2

ςT Q̃ς, (22)

almost everywhere, wherẽP andQ̃ are related by the
Algebraic Lyapunov Equation

ĀT P̃ + P̃ Ā = −Q̃. (23)

Since Ā is Hurwitz for b(x, t)K1 > 0,
2b(x, t)K2 + 2̺(x, t) > 0, for everyQ̃ = Q̃T > 0,
there exist a unique solutioñP = P̃T > 0 of the (23),
so thatV0 is a strict Lyapunov function.

Remark 1. The stability of the equilibriumς = 0 of
(20) is completely determined by the stability of the
matrix Ā. However, classical versions of Lyapunov ’s
theorem [Filippov, 1988] cannot be used since they
require a continuously differentiable, or at least locally
Lipschitz continuous Lyapunov function, thoughV0
(21) is continuous but not locally Lipschitz. Nonethe-
less, as it is explained in Theorem 1 in [Moreno, 2012],
it is possible to show the convergence properties by
means of Zubov ’s theorem [Pozniak, 2008], that
requires only continuous Lyapunov functions. This
argument is valid in all the proofs of the present paper,
so that no further discussion of these issues will be
required.

From Assumption B4 and B5, it follows that

0 < ̺(x, t) < δ2 + δ3 = δ4.

Notice that, asς1 andς2 converge to0 in finite time, it
follows thats andṡ converge to0 in finite time, too.
The control design based on ASTA approach is for-

mulated in the following theorem.

Theorem 3.1. Considering system (15) satisfying as-
sumptionsB3,B4 andB5 for unknown gainsδ1, δ2 >
0. Then, for any initial conditionsx(0), ands(0), there
exists a finite time0 < tF and a parameterµ, as soon
as the condition

K1 >
δ1
(

λ+ 4ǫ2∗
)

+ ǫ∗

λ
+

[

2ǫ∗δ1 − λ− 4ǫ2∗
]2

4ǫ∗λ
,

holds, if |s(0)| > µ, so that a real 2-sliding mode, i.e.
|s| ≤ η1 and |ṡ| ≤ η2, is established∀t ≥ tF , under
the action of ASTA control (12) with the adaptive gains

K̇1 =







ω1

√

γ1

2
sign(|s| − µ), if K1 > K∗,

K∗, if K1 ≤ K∗,

K2 = 2ǫ∗K1,
(24)

whereǫ∗, λ, γ1, ω1, µ are arbitrary positive constants,
andη1 ≥ µ, η2 > 0. ⋄

Proof of Theorem 3.1.See [Shtessel, 2012].



Now, according to (30), the sliding surface for the con-
trol (12)-(13) is defined as

s = [Π̃i + ψi(2Π̃i − Π̃i−1 − Π̃i+1)]

+λi[Π̇i + ψi(2Π̇i − Π̇i−1 − Π̇i+1)]
(25)

whereψi = Kf
−1Kg = ψT

i ≥ 0.

4 FORMATION CONTROL PROBLEM
Let N be the number of mobile robots in the forma-

tion. A formation pattern is defined to be a set

P = {Πd
1, ...,Π

d
N} (26)

whereΠd
i is the desired location of the hand position

of thei− th robot. In this paper will be considered the
class of formation control problems where the group of
robots is required to commute through a sequence of
formation patternsPj , j = 1, ..., J , where is assumed
that the sequence of formation patterns are designed
in such a way as to avoid robot collisions. Besides,
it is desirable to maintain the robots in the shape as the
destination pattern.
There are two competing objectives. The first objec-

tive it to move the robots to their final destination as
specified in the formation pattern. The second objec-
tive is to maintain formation during the transition. A
diagram of the competing objectives is illustrated in
Figure 2.

Figure 2: Competing objectives.

In order to incorporate both competing objectives, er-
ror functions will be defined. Letεg be the total error
between the current position of the robots and the de-
sired formation pattern

εg =
N
∑

i=1

Π̃T
i KgΠ̃i (27)

whereKg is a symmetric positive definite matrix, and
Π̃i = Πi − Πd

i . Similarly, defineεf as the formation

error

εf =
∑

i=<N>

(Π̃i − Π̃i+1)
TKf (Π̃i − Π̃i+1) (28)

whereKf = KT
f ≥ 0, and where the robot index is

defined as moduloN , i.e. Π̃N+1 = Π̃1, andΠ̃0 = Π̃N .
i =< N > is used to indicate summation around the
ring defined by the formation pattern.
The total error for the formation coordination problem

is the sum ofεg andεf

ε(t) = εf (t) + εg(t)

=
∑

i=N{Π̃T
i KgΠ̃i

+(Π̃i − Π̃i+1)
TKf (Π̃i − Π̃i+1)}

(29)

whereKf andKg weight the relative importance of
formation keeping versus goal convergence. The for-
mation control objective is to driveε → 0 asymptoti-
cally.
Now, a control strategy to driveε(t) from (29) to zero,

taking into account the dynamics (11) is proposed. The
coupled dynamics approach couples the dynamics of
the robots by incorporating relative position and veloc-
ity information between neighbors in the control strat-
egy. This approach requires that each robot knows the
relative position and velocity of two other robots, as
well as their desired positions in the target formation
pattern.
Thus, the control law employed is given by

vi = −KgΠ̃i −DgΠ̇i

−Kf (Π̃i − Π̃i+1)−Df (Π̇i − Π̇i−1)

−Kf (Π̃i − Π̃i−1)−Df (Π̇i − Π̇i+1)

(30)

whereKf andDf are symmetric positive semidefinite
matrices, andKg andDg are symmetric positive def-
inite. The first two terms in (30) drive the robot to its
final position in the formation pattern. The second two
terms maintain formation with thei − 1 robot, and the
last two terms maintain formation with thei+ 1 robot.

Theorem 4.1. If the robot formation (1) is subjected
to the control strategy defined in (9)-(8) and the er-
ror function (29) converges to zero asymptotically.
Furthermore, if the formation is initially at rest, i.e.
Π̇(0) = 0, then the formation error is bounded by

ε(t) ≤ ε(0)−
N
∑

i=1

Π̇T
i Π̇i (31)

Now, in order to probe Theorem 4.1, let us intro-
duce the Kronecker product notation and the following
lemma.
Lemma 3.1



LetC be the Hankel matrix defined by the row vector

(2,−1, 0, ..., 0,−1) ∈ ℜN (32)

thenC ∈ ℜN×N is symmetric positive definite. Ifξ =
(ξT1 , ..., ξ

T
N )T whereξi ∈ ℜp, then

∑

i=<N>

(ξi− ξi+1)
TJ(ξi− ξi+1) = ξT (C ⊗J)ξ (33)

where⊗ denotes the Kronecker product of two ma-
trices. If the termsJ(ξi − ξi−1) + J(ξi − ξi+1) are
stacked in a a column vector, the resulting vector can
be written as(C ⊗ J)ξ. In addition, ifJ ∈ ℜp×p is
positive definite, then(C ⊗ J) ∈ ℜNp×Np is positive
definite.

Proof of Theorem 4.1.Let us

Π̃ = (Π̃T
1 , ..., Π̃

T
N )T (34)

ε(t) can be rewritten as

ε =
1

2
Π̃T (IN ⊗Kg + C ⊗Kf )Π̃ (35)

Consider the Lyapunov function candidate

V = ε+
1

2

N
∑

i=1

Π̇T
i Π̇i (36)

which can be written as

V =
1

2
Π̃T (IN ⊗Kg + C ⊗Kf )Π̃ +

1

2
Π̇T Π̇ (37)

The time derivative ofV is

V̇ = Π̇T
[

(IN ⊗Kg + C ⊗Kf )Π̃ + v
]

(38)

wherev = (vT1 , ..., v
T
N )T . Thus, the control law (30)

can be rewritten as

v = −(IN ⊗Kg + C ⊗Kf )Π̃

−(IN ⊗Dg + C ⊗Df )Π̇
(39)

from Lemma 3.1, it follows that

V̇ = −Π̇T (IN ⊗Dg + C ⊗Df )Π̇ (40)

which is negative semidefinite.⋄

5 SIMULATION RESULTS
In this section, simulation results are provided to illus-

trate the effectiveness of the proposed methodology.
The simulation of the systems and the control algo-

rithms were developed in the MATLAB/Simulink en-
vironment, with a sampling time of0.006s. Controller
parameters are displayed on the Tables 1 and 2.
A triangular formation of four robot has been chosen,

the robots are commanded to transition through the se-
ries of formation patterns given by

P0 =

{(

3
0

)

,

(

1.5
0

)

,

(

3
1

)

,

(

4.5
0

)}

P1 =

{(

3.5
0.5

)

,

(

2
0.5

)

,

(

3.5
1.5

)

,

(

5
0.5

)}

P2 =

{(

3.5
2

)

,

(

2
2

)

,

(

3.5
3

)

,

(

5
2

)}

P3 =

{(

4.5
2

)

,

(

3
2

)

,

(

4.5
3

)

,

(

6
2

)}

P4 =

{(

5.5
3

)

,

(

4
3

)

,

(

5.5
4

)

,

(

7
3

)}

Table 1: ASTA X-axis Control parameters

i ωxi λxi µxi γxi ǫ∗xi

1 0.0012 14 0.12 1.1 0.35

2 0.0017 14 0.1 1.1 0.35

3 0.0017 14 0.1 1.1 0.35

4 0.0017 14 0.1 1.1 0.35

Table 2: ASTA Y-axis Control parameters

i ωyi λyi µyi γyi ǫ∗yi

1 0.0013 14 1.13 1.1 0.5

2 0.0013 14 1.13 1.1 0.5

3 0.0014 14 1.14 1.1 0.5

4 0.0011 14 1.15 1.1 0.5

The corresponding trajectories over the plane XY, are
shown in the Figure 3. Response from the different
mobile robot can be seen in the Figure 4.
From Figures 3-4 can be seen competing objectives,

the robots move to desired positions holding the for-
mation pattern along the transition from point to point.

6 CONCLUSIONS
In this work, the problem of transitioning a group of

robots through a sequence of formation patterns has
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Figure 3: XY plane trajectories.
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Figure 4: Robots position.

been considered. The group objective is to maintain the
desired formation pattern during the transition. With
this aim, a control strategy that combines feedback lin-
earisation with an adaptive super-twisting control algo-
rithm has been proposed. Simulation results demon-
strated the effectiveness of the proposed scheme.
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