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Abstract: In this paper, a bias-compensating method for a continuous-time
model estimation by using adaptive observer is proposed. It is assumed that the
observation noise is a white Gaussinan signal while there are no process noises. The
proposed method is applicable for the identification in the closed loop environment.
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1. INTRODUCTION

There are many results on the direct identifica-
tion of a continuous-time model from sampled
I/O data for more than three decades (Young,
1981; Unbehauen and Rao, 1990; Sinha and Rao,
1991; Pintelon et al., 1994). The importance of
the continuous-time model identification increases
as the computer becomes faster and as the sam-
pling period becomes smaller because the conven-
tional discrete-time model identification method
becomes numerically unstable when the sampling
period becomes small.

On the other hand, there are increasing demands
on the development of the identification method in
the closed loop environment(Forssell and Ljung,
1999). In general, the sampling period for the
feedback control is faster than the sampling period
which is considered to be optimal for the parame-
ter estimation of the plant. Thus, the closed loop
identification requires the techniques developed
for the continuous-time model identification.

Among the many approaches to the direct identi-
fication of continuous-time models, a use of state
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variable filters is one of the basic approaches and
has a long history(Wang and Gawthrop, 2001;
Young, 1981). In order to recover the informa-
tion loss incurred by the sampling, the authors
have proposed a continuous-time model identi-
fication method by using an adaptive observer,
which estimates the inter-sample output of the
plant as well as the plant parameters with the
ZOH input assumption (Ikeda et al., 2006a; Ikeda
et al., 2006b). The output of the state variable
filter becomes a pseudo regression vector and a
bootstrap method is adopted. The parameter con-
vergence and the parameter estimation error of
the proposed method are analyzed in (Ikeda et
al., 2006a; Ikeda et al., 2006b).

In this paper, bias compensating method is ap-
plied for the previously proposed method(Ikeda et
al., 2006a; Ikeda et al., 2006b) in order to achieve
the consistency of the estimate. Bias compensat-
ing least squares methods were origninally devel-
oped for the discrete-time model estimation(Sagara
and Wada, 1977) and applied for the continuous-
time model estimation(Zhao et al., 1991; Garnier
et al., 2000).

Section 2 states the problem. An adaptive ob-
server for the estimation of the continuous-time
model is introduced in section 3. Section 4 an-



alyzes the asymptotic bias of the least squares
estimator in the closed loop envorionment. The
magnitude of the variance of the noise is also esti-
mated from the output estimation error. Section 5
introduces an iteration algorithm to estimate the
continuous-time model with bias compensation.
A numerical example is presented in section 6.
Finally, section 7 concludes the paper.

Notation: Let τ be a sampling period throughout
the paper. A function of continuous time t will be
denoted by x(t) while its sampled value x(kτ) will
be denoted by x[k].

Let ‖x‖ denote an Euclidean norm of x ∈ Rn. For
a discrete-time signal x[k] ∈ Rn, define its norm
as

‖x‖[1,N ] =

√√√√ N∑
k=1

‖x[k]‖2. (1)

Let O(A, cT) denote an observability matrix:

O(A, cT) = [ c ATc . . . (AT)n−1c ]T . (2)

Let E{X} denote an expectation of X .

2. PROBLEM STATEMENT

Consider an SISO continuous-time system:

ẋp(t) = Axp(t) + bu(t), (3)

y(t) = cTxp(t) + ν(t), (4)

where u(t) ∈ R, y(t) ∈ R, xp(t) ∈ Rn, and
ν(t) ∈ R are the input, the output, the state of the
system, and the observation noise, respectively.
System matrices A, b, and c have appropriate
dimensions. Assume the followings for this system.

(A1) (A, cT) is observable,
(A2) an upper bound of the dimension n is

known. (It is denoted n as such upper
bound.)

Without loss of generality, (A, b, cT) is assumed to
be the observer canonical form:

A =

⎡
⎢⎢⎢⎣
−a1 1

...
. . .

... 1
−an

⎤
⎥⎥⎥⎦ , b =

⎡
⎣ b1

...
bn

⎤
⎦ ,

c = [ 1 0 . . . 0 ]T .

Define a coefficient vector of the characteristic
polynomial of A as a = (a1, . . . , an)T. Further-
more, sampled I/O data available for the identifi-
cation is assumed as follows:

(A3) the output y(t) can be measured at
the discrete-time instants t = kτ (k =
0, 1, 2, . . . , N).

(A4) the input u(t) is a ZOH of a discrete-time
signal, i.e.,

u(t) = u(�t/τ�τ), ∀t ∈ [0, Nτ ]. (5)

(A5) The observation noise ν[k] is a zero mean
white gaussian noise with covariance:

E{ν[k]ν[l]} = σ2
νδkl (6)

where δkl is a Kronecker delta.
(A6) The I/O data is collected in the close

loop environment, where the controller is a
(discrete-time) linear time invariant system
and the closed loop system is asymptotically
stable.

From the assumption (A3) and (A4), the plant
has a discrete-time representation:

xp[k + 1] = Apxp[k] + bpu[k] (7)

y[k] = cT
p xp[k] + ν[k] (8)

and from (A6), there exists a feedback controller:

xc[k + 1] = Acxc[k] − bcy[k] + bc2r[k] (9)

u[k] = cT
c xc[k] − dcy[k] + dc2r[k]. (10)

such that

Acl :=
[

Ap − bpdcc
T
p bpc

T
c

−bcc
T
p Ac

]
(11)

has its all eigenvalues on the open unit disc. A
reference signal r[k] is deterministic.

(A7) It is assumed that {r[k]} is independent of
{v[k]}.

Problem formulation: System identification re-
quires the determination of the unknown plant pa-
rameters a = (a1, . . . , an)T and b = (b1, . . . , bn)T

from sampled I/O data {u[k], y[k]} for k =
0, . . . , N and to estimate the state variable xp(t)
for t ∈ [0, Nτ ].

3. ADAPTIVE OBSERVER FOR THE
ESTIMATION OF A CONTINUOUS-TIME

MODEL

The proposing adaptive observer is based on
the structure depicted in Fig. 1, in which there
is an estimation mechanism of the intersample
output(Ikeda et al., 2006a). When the parameter
estimate θ̂i is a constant vector, the continuous-
time signals zi(t) can be easily discretized without
any approximations because of the zeroth order
hold input assumption.
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Fig. 1. Observer using SVF

Define a discrete-time state variable filter

SVFD : (F, g, τ, θ̂i, {u[k]}, {y[k]}) �→ {zi[k]} (12)

as

zi[k + 1] = F̄d(θ̂i)zi[k] + Ḡd(θ̂i)
[

y[k]
u[k]

]
(13)

zi[0] = [ 0T 0T gT ]T (14)

where F̄d(θ) and Ḡd(θ) are

F̄d(θ) = eF̄θτ −
τ∫

0

eF̄θtdt ḡθT, (15)

Ḡd(θ) =

τ∫
0

eF̄θtdt Ḡ, (16)

F̄θ = F̄ + ḡθT, ḡ =

⎡
⎣ g

0
0

⎤
⎦ , (17)

F̄ =

⎡
⎣F O O

O F O
O O F

⎤
⎦ , Ḡ =

⎡
⎣ g 0

0 g
0 0

⎤
⎦ . (18)

The true value of the estimated parameter is given
by

θ∗ =

⎡
⎣ θ∗1

θ∗2
θ∗3

⎤
⎦ =

⎡
⎣O(FT, gT)−1O(Fo, c

T)(f − a)
O(FT, gT)−1O(Fo, c

T)b
O(FT, gT)−1O(Fo, c

T)xp(0)

⎤
⎦

(19)

where f is a coefficient vector of the characteristic
polynomial of F and (Fo, c

T) is an observer canon-
ical form of (FT, gT). For the sake of simplicity,
(F, g) is assumed to be a controller canonical form.

In order to analyze the parameter estimation error
in the following section, decompose the error term
z̃i[k] = zi[k] − z∗[k] as

z̃i[k] = z̃iν [k] + z̃iΔ[k]. (20)

where {z̃iν [k]}, {z̃iΔ[k]} and {z∗[k]} are defined
by

z̃iν [k + 1] = F̄d(θ̂i)z̃iν [k] + Ḡd(θ̂i)
[

ν[k]
0

]
(21)

z̃iΔ[k + 1] = F̄d(θ̂i)z̃iΔ[k] + Δ(θ̂i, θ∗)(ż∗)[k] (22)

(ż∗)[k] = [F̄ , Ḡ][ zT∗ [k] cTxp[k] u[k] ]T. (23)

Δ(θ̂1, θ̂2) =
∞∑

m=1

τm+1

(m + 1)!

m−1∑
i=0

F̄m−1−i

θ̂2
ḡθ̃T

12F̄
i
θ̂1

,

(24)

{z∗[k]}= SVFD(F, g, τ, θ∗, {u[k]}, {cTxp[k]}).
(25)

Consider the following least-squares criterion:

J(θ, k) =
k∑

i=1

[
y[k] − zT

θ [k]θ
]2

. (26)

Because zθ[k] is a pseudo-linear regression vector,
a bootstrap method is adopted here. First, define
a discrete-time Recursive Least Square (RLS)
algorithm:

RLS : ({zi[k]}, {y[k]}, θ̂i, γ) �→ (θ̄i+1, Γi+1) (27)

as

θ̄i+1 = θ̂[N ], Γi+1 = Γ[N ], (28)

θ̂[k] = θ̂[k − 1] − Γ[k − 1]zi[k]
1 + zT

i [k]Γ[k − 1]zi[k]
ey−[k],

(29)

Γ[k] =
{

I − Γ[k − 1]zi[k]zT
i [k]

1 + zT
i [k]Γ[k − 1]zi[k]

}
Γ[k − 1],

(30)

ey−[k] = zT
i [k]θ̂[k − 1] − y[k], (31)

θ̂[0] = θ̂i, Γ[0] = γI. (32)

The design parameter γ > 0 will be chosen to be a
very large number, say 102 ∼ 105 in general. The
output of the RLS algorithm θ̂i+1 and Γi+1 are the
estimated parameter vector and the recursively
estimated inverse of the covariance matrix of the
regression vector zi[k], k = 0, . . . , N .

By using this RLS algorithm, parameter vector is
estimated as follows:

θ̄i+1 − θ∗ =
1
γ

Γi+1(θ̂i − θ∗) − Γi+1

N∑
k=1

zi[k]εi[k],

(33)

εi[k] = θT
∗ z̃i[k] − ν[k]. (34)

Decompose εi[k] into the determinitic part and
the stochastic part as



εi[k] = εiΔ[k] + εiν [k] (35)

= z̃T
iΔ[k]θ∗ + z̃T

iν [k]θ∗ − ν[k] (36)

by using z̃iΔ[k] and z̃iν [k] in (20). It can be
shown that ‖εiΔ‖ → 0 when θ̂i → θ∗ (Ikeda
et al., 2006a). The asymptotic bias is caused by
εiν [k] and is analyzed in the next section.

4. ASYMPTOTIC BIAS OF THE LEAST
SQUARES ESTIMATE IN CLOSED LOOP

ENVIRONMENT

Consider an innovations process ν†[k] defined by

ξ̂[k + 1] = (Ap − Kdc
T
p )ξ̂[k] + Kdν[k], (37)

ν†[k] =−cT
p ξ̂[k] + ν[k], (38)

where

Kd = ApΣcp[cT
p Σcp + σ2

ν ]−1, (39)

Σ = Ap(Σ − Σcp[cT
p Σcp + σ2

ν ]−1cT
p Σ)AT

p .(40)

It is well known that the covariance of the inno-
vations process is given by

E{ν†[k]ν†[l]} = (cT
p Σcp + σ2

ν)δkl. (41)

Rewrite the closed loop system whose input is
ν†[k] instead of ν[k]. In this section, we consider
the case when r[k] = 0 because {r[k]} is inde-
pendent of {ν[k]}. Define x′

p[k] = xp[k] + ξ̂[k],
then the plant model (7) and (8) together with
the innovations representation (37) and (38) can
be rewritten as

x′
p[k + 1] = Apx

′
p[k] + bpu[k] + Kdν

†[k], (42)

y[k] = cT
p x′

p[k] + ν†[k]. (43)

From this and the controller (9) and (10), we
obtain

[
x′

p[k + 1]
xc[k + 1]

]
= Acl

[
x′

p[k]
xc[k]

]
+ B†

clν
†[k] (44)[

y[k]
u[k]

]
= Ccl

[
x′

p[k]
xc[k]

]
+ Dclν

†[k] (45)

where

B†
cl = [ (Kd − bpdc)T −bT

c ]T , (46)

Ccl =
[

cT
cl,y

cT
cl,u

]
=

[
cT
p 0T

−dcc
T
p cT

c

]
, (47)

Dcl =
[

1
−dc

]
. (48)

Because Acl is stable from the assumption (A4),
the following lemma holds.

Lemma 1. In the feedback system (44) and (45),
E{y[k]ν†[l]} = 0 (l > k) and E{u[k]ν†[l]} = 0
(l > k).

Proof. It is obvious from the discussions above.

Next, consider the equation error εiν [k] in eq. (35)
when the true value of the estimated parameter
is known, which will be denoted by ε[k] instead
of εiν [k]. Equation error ε[k] has the following
representation:

ε[k] = (ζ1[k])Tθ∗1 − ν[k] (49)

where ζ1[k] ∈ Rn is the first subvector of

{ζ[k]} = SVFD(F, g, τ, θ∗, {0}, {ν[k]}). (50)

Replacing the input ν[k] by the innovation ν†[k],
define

ε†[k] = (ζ†1 [k])T(θ∗1 − Kc) − ν†[k] (51)

where ζ†1 [k] ∈ Rn is the first subvector of

{ζ†[k]} = SVFD(F, g, τ, θ∗, {0}, {ν†[k]}) (52)

and Kc ∈ Rn is

Kc =
(∫ τ

0

eAtdt

)−1

Kd. (53)

For this signal, the following lemma holds.

Lemma 2. Let ε[k] be defined by eqs. (49) and
(50) and ε̃[k] be defined by eqs. (51) and (52)
together with the innovations model (37) and
(38). Then, ε̃[k] = ε[k].

Proof. See (Ikeda, 2007).

Now, calculate E{z[k]ε[k]} where regression vec-
tor z[k] is defined by

{z[k]} = SVFD(F, g, τ, θ∗, {u[k]}, {y[k]}). (54)

From Lemmas 1 and 2, we obtain

E{z[k]ε[k]} = −E{z[k]ζ†1 [k]T}(θ∗1 − Kc). (55)

In order to calculate the expectation of z[k]ζ†1 [k]T,
define

X̄[k] = [z[k]T, (ζ†1 [k])T, [x′
p[k]T, xc[k]T]]T. (56)

Then, we obtain the following equation:

X̄ [k + 1] = ĀX̄[k] + B̄ν̃[k] (57)

where



Ā =

⎡
⎣ F̄d(θ∗) O Ḡd(θ∗)CT

cl

O F̄d11(θ∗) O
O O Acl

⎤
⎦ , (58)

B̄ =

⎡
⎣ Ḡd(θ∗)Dcl

Ḡd11(θ∗)
B†

cl

⎤
⎦ . (59)

From the definition of X̄[k], E{z[k]ζ†1 [k]T} is a 1-2
block of E{X̄[k]X̄[k]T}. Therefore,

E{z[k]ε[k]} = −P12(θ∗1 − Kc)σ2
ν† (60)

where P12 is a 1-2 block of P = PT > 0 which
is a positive definite solution of the Lyapunov
equation:

P = ĀP ĀT + B̄B̄T, (61)

and σ2
ν† = cT

p Σcp + σ2
ν .

The variance of the innovation σ2
ν† can be esti-

mated from the output estimation error

ỹi[k] := ŷi[k] − y[k] (62)

= (θ̄i+1 − θ∗)Tzi[k] + εi[k]. (63)

The summation of the squared error becomes

1
N

N∑
k=1

ỹi[k]2

=
1
N

N∑
k=1

εi[k]2 + 2(θ̄i+1 − θ∗)
1
N

N∑
k=1

zi[k]εi[k]

+
1
N

(θ̄i+1 − θ∗)T
N∑

k=1

zi[k]zi[k]T(θ̄i+1 − θ∗).

(64)

Assuming ‖z̃iΔ‖[0,N ] is small enough compared
with ‖z̃iν‖[0,N ], the expectation of the r.h.s. of the
equation above becomes

E

{
1
N

N∑
k=1

ỹi[k]2
}

= {1 + (θ∗1 − Kc)TP22(θ∗1 − Kc)}σ2
ν†

−N(θ∗1 − Kc)TPT
12Γi+1P12(θ∗1 − Kc)σ4

ν†

(65)

Γi+1 is very small in general, we may define

σ̂2
ν† =

N∑
k=1

ỹi[k]2

N{1 + (θ∗1 − Kc)TP22(θ∗1 − Kc)} . (66)

Remark 3. The proposed method is no more a di-
rect approach of the closed loop identification be-
cause the bias compensating term requires the in-
formation on the feedback controller even though

the least squares estimate does not require con-
troller parameters. However, when the prefilter
is designed as an optimal prefilter by using the
Kalman filter theory, the parameter vector θ∗1
becomes Kc. This means there is no bias to be
compensated and the controller information is not
required.

5. ITERATION OF ADAPTIVE ESTIMATION

As seen in section 4, θ̄i+1 is asymptotically biased

due to the term
N∑

k=1

z̃iν [k]εiν [k]. However, the

asymptotic bias of the parameter estimate θ̄i+1

can be compensated and define θ̂i+1 by

θ̂i+1 = θ̄i+1 + Γi+1β̂i, (67)

where
β̂i = NP̂12i(θ̂i1 − K̂ci)σ̂2

ν† ,

and P̂12i and K̂ci are calculated by using eqs.
(39), (40), and (61), where plant parameters are
replaced by their estimates.

A bootstrap algorithm is defined as follows.

Iteration Algorithm:

(1) Let θ̂0 be an R3n vector, and (F, g) be an
n-dimensional single input controllable pair
where F is a Hurwitz matrix. Let i = 0.

(2) {zi[k]} = SVFD(F, g, τ, θ̂i, {u[k]}, {y[k]})
(3) (θ̄i+1, Γi+1) = RLS({zi[k]}, {y[k]}, θ̂i, γ)
(4) Compensate the bias, and define θ̂i as in (67).
(5) Increase i by 1 and goto step (2)

The regression vectors are assumed to be persis-
tently exciting (Ljung, 1999) as follows:

(A8) Assume each {zi[k]} satisfies the following
condition:

kminI ≤
N∑

k=1

zi[k]zT
i [k] ≤ kmaxI. (68)

Under the assumptions (A1) to (A8), the proposed
estimate θ̂∞ becomes unbiased and consistent(Ikeda,
2007), i.e.,

E{θ̂∞} = θ∗. (69)

6. NUMERICAL EXAMPLE

In order to illustrate the proposed adaptive ob-
server, a numerical example of an identification of
a 3rd order system is presented. The plant to be
estimated is

y(t) =
2

(p + 2)(p − 1)p
u(t) + ν(t).

The sampling period is τ = 1/64 = 0.015625[s]
and the number of samples N varies from 1024 to
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Fig. 2. Consistency of the proposed method

131072. The observation noise ν[k] is generated as
zero mean white Gaussian noise with its variance
σ2

ν = 1.0. The I/O data is collected in the closed
loop environment. The controller is designed by
using LQG/LTR method and is given by

u[k] =
q3 − 2.906q2 + 2.816q − 0.9098
q3 − 2.868q2 + 2.744q − 0.8757

r[k]

− 0.865q2 − 1.702q + 0.8372
q3 − 2.868q2 + 2.744q − 0.8757

y[k].

The reference input sequence r[k] is a pseudo-
random binary signal(PBRS) taking values ±10
with its bandwidth 0.25[Hz]. The initial state of
the plant is assumed to be known as 0 for the sake
of simplicity. For this problem, the state variable
filters are designed by pole placement at s = −1.5
and is given by

F =

⎛
⎝−4.5 −6.75 −3.375

1 0 0
0 1 0

⎞
⎠ , g =

⎛
⎝ 1

0
0

⎞
⎠ .

The estimation results are presented in Fig.2.
RSE (Root Squared Error) of the parameter es-
timates are plotted versus the number of data
both in logarithmic scale. RSE of the parameter
estimates with bias compensation becomes small
as N becomes large with coefficient about −0.5,
while RSE of the parameter estimates without
bias compensation does not become small even
if N becomes large. From this simulation, it can
be concluded that the proposed method with BC
works as a consistent estimate.

7. CONCLUSION

In this paper, a bias compensating method for the
identification of the closed loop environment by
using adaptive observer(Ikeda et al., 2006a; Ikeda
et al., 2006b), which estimates the continuous-
time model from the samled I/O data, is proposed.

When the plant is unstable, the bias compensating
term can be calculated based on the innovations
instead of the noise itself.
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