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Abstract. Here we propose the modification of Kapitza procedure
of averaging to stabilize the oscillator driven by periodical external
field. We demonstrate the effect of stabilization with relatively low
frequency of the field oscillation to compare with sin- or cos-periodical
force.
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1. Introduction

Kapitza pendulum driven by rapidly oscillating periodical force can
have different structure of its stable points [1]. A set of control models
have been applied to stabilize [2]-[3] and synchronize [4] the oscillations
by special shapes of non-linear periodical excitation.

Here we propose the modified Kapitza method of averaging and apply
it to stabilize the oscillator in rapidly changing external field in the frame
of open-loop control technique. We involve one-dimensional T -periodical
force f with the zero average meaning: f̄ = 0.

In the Section 2 we present the modified Kapitza averaging procedure.
Then in Section 3 we apply it to find out the stable points of the oscillator
in the periodical field of kicking pulses. We choose a special shape of the
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pulses to stabilize the pendulum in non-trivial stable points with the
frequency that should not be very high.

2. Modified Kapitza method for external oscillating force

Let’s discuss the one-dimensional motion of a classical particle in the
time-independent potential U(x) and under a periodical force:

f(x, t) =
∞∑

k=1

[ak(x) cos(kωt) + bk(x) sin(kωt)] , (1)

which varies in time with a high frequency ω (ak, bk are functions of
the co-ordinates only). If we put TU for a character time of the motion
which the particle would execute in the field U alone, then by a ”high”
frequency ω ≡ 2π/T we mean such that ω >> 2π/TU . In (1) ak and bk

are the Fourier coefficients given by

ak(x) =
2

T

∫ T

0

f(x, t) cos kωt dt ; (2)

bk(x) =
2

T

∫ T

0

f(x, t) sin kωt dt .

The equation of the particle motion is:

mẍ = −dU(x)

dx
+ f(x, t) . (3)

Following the notation by [5], we present the movement as a smooth
path and at the same time execute small oscillations of frequency ω
about the path: x(t) = X(t)+ξ(t), where ξ(t) corresponds to these small
oscillations. The mean value of the function ξ(t) over its period T is zero,
and the function X(t) changes only slightly in that time. Denoting this
average by a bar, we therefore have x̄ = X(t). Now Taylor’s expansion
in powers of ξ up to the first order term provides us:

dU

dx
=

dU

dX
+ ξ

d2U

dX2
. (4)

Substituting (4) in (3) we have:

mẌ + mξ̈ = − dU

dX
− ξ

d2U

dX2
+ f(X, t) + ξ

df

dX
. (5)
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This equation involves both oscillatory and ”smooth” terms, which must
evidently be separately equal. For the oscillating terms we can put simply

mξ̈ = f(X, t) (6)

and the smooth term is

mẌ = − dU

dX
− ξ

d2U

dX2
+ ξ

df

dX
.

Integrating Eq.(6) with the function f given by (1) and regarding X as
a constant, we get

ξ = − 1

mω2

∞∑

k=1

1

k2
(ak cos kωt + bk sin kωt)

Next we average equation (5) with respect to the time interval [0, T ]:

1/T
∫ T

0
... dt, we denote it by a overline. Since ξ̄ = 0 and f̄ = 0,

mẌ = − dU

dX
+ ξ

df

dX
(7)

and

df

dX
=

∞∑

k=1

(
ák cos kωt + b́k sin kωt

)
,

where ák = dak/dX and b́k = dbk/dX. Then we apply the time averaging:

ξ · df

dX
= − 1

mω2

∞∑

k,j=1

[
akáj

k2
· cos kωt cos jωt+

+
bkáj

k2
· sin kωt cos jωt +

akb́j

k2
· cos kωt sin jωt +

+
bkb́j

k2
· sin kωt sin jωt

]
.

Since

sin kωt cos jωt = cos kωt sin jωt = 0 ;

cos kωt cos jωt = sin kωt sin jωt =
1

2
if k = j, and all of them are zero if k 6= j; we have

ξ · df

dX
= − 1

4mω2

∞∑

k=1

1

k2

(
da2

k

dX
+

db2
k

dX

)
. (8)
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Substituting (8) in (7),

mẌ = − dU

dX
− 1

4mω2

∞∑

k=1

1

k2

d(a2
k + b2

k)

dX
. (9)

Eq.(9) involves only the function X(t). It can be written as

mẌ = −dUeff

dX
,

where the effective potential energy is defined as

Ueff = U +
1

4mω2

∞∑

k=1

(a2
k + b2

k)

k2
. (10)

If ak, bk = 0 for any k ≥ 2, our Eq.(10) coincides with the result of [5].

3. Kapitza oscillator stimulated by kicking pulses

Now we apply Eq.(10) to check the stable points of Kapitza pendulum
whose point of support oscillates horizontally. If the force f is given by:

f = mω2 cos φ sin ωt ,

the effective potential energy is [5]:

Ueff = mgl

(
− cos φ +

ω2

4gl
cos2 φ

)
.

The positions of stable equilibrium correspond to the minima of Ueff

which has extremum at φ = 0 , π , ± arccos 2gl/ω2. Vertically upward
φ = π is not a stable point. If ω2 < 2gl , the downward point φ = 0 is
stable. If ω2 > 2gl the point given by cos φ = 2gl/ω2 is stable.

Now let’s introduce the rectangular-shape force:

f(t) = mω2 cos φ ·R(t, n) ,

where the function R is T -periodical: R(t + T, n) ≡ R(t, n); and for one
its period:

R(t, n) =

{
1 0 ≤ t < τ ;
−(n− 1) τ ≤ t < T .

(11)

Here: τ ≡ (
1− 1

n

)
T . We choose such a form of R(t, n) to satisfy the

condition f̄ = 0, i.e. R̄ =
∫ T

0
R(t, n)dt = 0.
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With (2) the Fourier coefficients are given by

ak = mω2 cos φ · n

πk
sin kωτ ; (12)

bk = mω2 cos φ · n

πk
(1− cos kωτ) .

Then Eq.(10) becomes:

Ueff = U +
mω2n2 cos2 φ

2π2

∞∑

k=1

(1− cos kωτ)

k4
,

or, substituting τ and using cos kωτ = cos(2πk/n):

Ueff = U + mω2 cos2 φ · Sn = mgl

(
− cos φ + Sn · ω2

gl
cos2 φ

)

with the notation:

Sn ≡ n2

π2

∞∑

k=1

1

k4
sin2

(
πk

n

)
.

In particular, if we take n = 2, 3, 4, then

S2 =
4

π2

∞∑
j=0

1

(2j + 1)4
=

π2

24
' 0.411 ;

S3 =
9

π2
· 3

4

∞∑
j=0

[
1

(3j + 1)4
+

1

(3j + 2)4

]
=

=
1

72π2

[
Ψ(3)

(
1

3

)
+ Ψ(3)

(
2

3

)]
' 0.731 ;

S4 =
16

π2

∞∑
j=0

[
1

2
· 1

(4j + 1)4
+ 1 · 1

(4j + 2)4
+

1

2
· 1

(4j + 3)4

]
=

=
1

192π2

[
Ψ(3)

(
1

4

)
+ 2Ψ(3)

(
2

4

)
+ Ψ(3)

(
3

4

)]
' 0.925 ,

where Ψ(m)(z) is the polygamma function:

Ψ(m)(z) =
∞∑

j=0

(−1)m+1m!

(j + z)m+1
.

Thus, we get the non-trivial stable point at ± arccos(gl/2Snω
2); and

for n = 2 the points ± arccos(1.217gl/ω2) are stable, if ω2 > 1.217gl;
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for n = 3 the points ± arccos(0.684gl/ω2) are stable, if ω2 > 0.684gl;
for n = 4 the points ± arccos(0.541gl/ω2) are stable, if ω2 > 0.541gl.

With increasing n the coefficient Sn becomes greater and, thus, we can
stabilize the oscillator with the comparatively low frequency ω.

The same effect we observe for the case of vertical modulation:

f = mω2 sin φ · sin ωt . (13)

Here the inverse point φ = π is stable under the condition ω2 > 2gl [5].
If in the place of (13) we apply the force

f = mω2 sin φ ·R(t, n) ,

we reproduce conditions of the upper point stability as: ω2 > 1.217gl for
n = 2, ω2 > 0.684gl for n = 3 and ω2 > 0.541gl for n = 4 correspond-
ingly. In the last case we can achieve the upper point stabilization with
the kicking external force frequency that is half than for the sine-shape.

4. Conclusions

We can apply the open-loop (feedforward) algorithm to control the po-
sition of the non-trivial stable point for horizontally modulated Kapitza
oscillator. In both cases of horizontal and vertical modulations we can
stabilize the oscillator in non-trivial stable point with the frequency ω
that is sufficiently less than in the case of harmonic modulation. For this
purpose we have to apply the special shape of the control external force
in the form of kicking pulses (11).
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