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Abstract
We present the new effect of phase lead synchro-

nization in unidirectionally coupled (”master–slave” or
drive–response configuration) chaotic oscillators. Here
the phases of the coupled systems are locked in such
away that the response phase is ahead of the drive
phase. This phenomenon appearers when the response
system is faster than the drive system. The effect can be
used for forecasting the chaotic dynamics of the drive
system. We demonstrate this phenomenon for unidirec-
tionally coupled nonidentical chaotic Rössler systems.
The results of both analytical and numerical investiga-
tions are presented.
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1 Introduction
Though long ago the notion of chaos was associ-

ated with the absolutely unpredictable state or pro-
cess [Lorenz, 1963] the things have been changed due
to the progress in computer technology and, in 2000, a
way of forecasting of chaotic dynamics was introduced
by Voss [Voss, 2000]. The proposed method relies on
the phenomenon of anticipating synchronization.
The phenomenon of synchronization refers to the col-

lective timing of coupled systems and manifests it-
self in physical, chemical as well as biological sys-
tems [Pikovsky, Rosemblum and Kurths, 2001]. The
notion of synchronization was generalized and applied
to different chaotic systems [Afraimovich, Verichev,
and Rabinovich, 1983; Boccaletti, Kurths, Osipov, Val-
ladares, and Zhou, 2002; Pecora and Carroll, 1990].
Anticipating synchronization refers to a particular
regime, which appears in unidirectionally coupled sys-
tems in a drive–response configuration. In this regime,
two dynamical systems synchronize in such a way that
the response system anticipates the trajectory of the

drive. Anticipating synchronization has been studied
theoretically and experimentally in many systems, e. g.,
in chaotic semiconductor lasers in electronic circuits,
in excitable systems, in coupled inertial ratchets, and
in neural networks [Ciszak, Calvo, Masoller, Mirasso,
and Toral, 2003; Ciszak, Marino, Toral and Balle,
2004; Kostur, Hänggi, Talkner and Mateos, 2005; Ma-
soller, 2001; Voss, 2002].
Two principal schemes have been proposed in or-

der to achieve anticipated synchronization. The first
scheme implies the presence of delay in the master sys-
tem [Voss, 2000]. The second, refereed to as the de-
lay coupling scheme [Voss, 2001], deserves more at-
tention. This is because of the fact that the master
system does not need to have delay term. The delay
term is incorporated into the slave system so that the
anticipating time can be varied without influence the
dynamics of the master system. However, that scheme
requires some constraints on the anticipation time and
coupling strength for the synchronization solution to
be stable [Voss, 2001; Calvo, Chialvo, Eguı́luz, Mi-
rasso, and Toral, 2004]. Recently we have shown that
the prediction time of such a scheme can bee essen-
tially enlarged via an appropriate construction of the
coupling matrix [Pyragas and Pyragienė, 2008; Pyra-
gas and Pyragienė, 2010].
In the present work, we have detected a more simple

and more universal way for the prediction of chaotic
dynamics. We show that anticipating synchronization
may appear in a very simple coupling scheme without
delay terms in either drive or response systems. The
effect is based on a phase synchronization (PS) first
described in [Rosenblum, Pikovsky and Kurths, 1996;
Rosenblum, Pikovsky and Kurths, 1997]. In these pa-
pers, the authors have considered the case of mutual
coupling between two chaotic oscillators and demon-
strated that their phases may lock at a sufficiently large
coupling strength. Contrary to this, we consider the
case of unidirectional coupling and show that the phase
synchronization may appear in such a way that the
phase of the response system outruns the phase of the



drive system. As a result, the response systems antici-
pates the dynamics of the drive system.
In the following, we first introduce the notion of

the phase lead synchronization for a simple system of
unidirectionally coupled phase oscillators. Then we
demonstrate that a similar phase lead synchronization
effect takes place in unidirectionally coupled chaotic
Rössler systems when the response system is faster
than the driver. We perform both the analytical and
numerical analysis of this phenomenon and show that
it can be used to forecast the chaotic dynamics of the
drive system.

2 Phase lead synchronization in a simple model
Consider a simple model of unidirectionally coupled

phase oscillators:

φ̇1 = ω1, (1a)
φ̇2 = ω2 + ε sin(φ1 − φ2), (1b)

where φ1 and φ2 are the phases of the oscillators, ω1

and ω2 are their natural frequencies and ε > 0 is the
coupling strength. We suppose that the response os-
cillator is faster then the drive, ω2 > ω1. The phase
difference ∆ = φ2−φ1 between the oscillators is gov-
erned by the Adler equation:

∆̇ = (ω2 − ω1)− ε sin∆. (2)

This system has a stable fixed point with positive

∆0 = arcsin

(
ω2 − ω1

ε

)
> 0 (3)

provided by ε > ω2 − ω1. Thus if this condition is
fulfilled we have a phase lead synchronization effect in
which the phase φ2 of the response system is ∆0 ahead
of the driver’s one:

φ2 = φ1 +∆0. (4)

Below we show that a similar phenomenon can ap-
pear in unidirectionally coupled chaotic Rössler sys-
tems, provided the response system is faster than the
driver.

3 Phase lead synchronization in Rössler systems
We consider two unidirectionally coupled Rössler sys-

tems with different characteristic frequencies. The first
system is a drive system

ẋ1 = −ω1y1 − z1, (5a)
ẏ1 = ω1x1 + ay1, (5b)
ż1 = b+ z1(x1 − c) (5c)

and the second system is a response system

ẋ2 = −ω2y2 − z2 + ε(x1 − x2), (6a)
ẏ2 = ω2x2 + ay2, (6b)
ż2 = b+ z2(x2 − c). (6c)

System’s parameters are the same as in [Rosenblum,
Pikovsky and Kurths, 1997]: a = 0.165, b =
0.2, c = 10, ω1 = 0.95, ω2 = 0.99. The param-
eters ω1,2 and ε represent the characteristic frequencies
of chaotic oscillators and the coupling strength, respec-
tively. The frequency of the slave system is slightly
larger than that of the master.
To describe the phase lead synchronization we de-

fine the phases and amplitudes of chaotic oscillations
in the same way as in [Rosenblum, Pikovsky and
Kurths, 1997]:

φ1,2 = arctan
y1,2
x1,2

, A1,2 = (x2
1,2 + y21,2)

1/2. (7)

To characterize different synchronization regimes that
appear in system (5)-(6) with the increase of the cou-
pling strength ε we have analyzed numerically various
characteristics, namely, the difference between aver-
aged frequencies

∆Ω = ⟨φ̇2 − φ̇1⟩, (8)

the similarity function

S2(τ) =
< [x2(t)− x1(t+ τ)]2 >

[< x2
1(t) >< x2

2(t) >]1/2
, (9)

and the conditional Lyapunov exponents λ1 > λ2 > λ3

of the response system determined by the variational
equations

δẋ2 = −ω2δy2 − δz2 − εδx2, (10a)
δẏ2 = ω2δx2 + aδy2, (10b)
δż2 = z2δx2 + (x2 − c)δz2. (10c)

The effect of the phase lead synchronization has been
numerically detected from the dependencies of the av-
eraged frequency difference ∆Ω, the similarity func-
tion S(τ) and three conditional Lyapunov exponents
λ1,2,3 on the coupling strength ε. The transition to the
phase locking at some ε = εl is characterized by van-
ishing of the averaged frequency difference ∆Ω. At
the same coupling strength, the largest conditional Lya-
punov exponent λ1 becomes negative. In the phase
locking regime, the phase difference φ2 − φ1 is pos-
itive and oscillates in a narrow interval around some
mean value Θ0. This confirms the effect of the phase



lead synchronization. When the phase lead synchro-
nization takes place, the similarly function S(τ) has
a deep minimum at some fixed value τ = τ0 > 0.
The further increase of the coupling strength leads to
considerable decrease of the minimum of the similar-
ity function such that at some ε = εa one can speak
about a transition to the anticipating synchronization in
which the response system anticipates the dynamics of
the drive system, x2(t) ≈ x1(t+ τ0). The anticipating
time τ0 depends on the coupling strength and decreases
with the increase of ε.
The numerical results have been confirmed analyti-

cally. The analytical treatment has been performed by
rewriting the model Eqs. (5)-(6) in the polar coordi-
nates (7). Assuming that the amplitudes vary slowly
and averaging the equations over rotations of the phases
φ1,2 we have derived an approximate dynamical equa-
tion for the phase difference θ = φ2 − φ1:

θ̇ = ω2 − ω1 −
ε

2

A1

A2
sin θ. (11)

This equation is similar to Eq. (2) considered in the
simple model. It has a positive stable fixed point

Θ0 = arcsin

[
2A2(ω2 − ω1)

A1ε

]
> 0 (12)

provided ε > 2A2(ω2−ω1)/A1. If this condition is ful-
filled we have the phase lead synchronization at which
the phase of the response system is Θ0 ahead of the
drive system, φ2 = φ1 + Θ0. Assuming A1 ≈ A2 the
transition point to the phase lead synchronization can
be just estimated as εp ≈ 2(ω2 − ω1) = 0.08. This is
in good agreement with the numerical results obtained
from computation of the difference between mean fre-
quencies ∆Ω as well as the maximal conditional Lya-
punov exponent λ1.

4 Conclusion
A new phenomenon of phase lead synchronization has

been detected and analyzed numerically and analyti-
cally in unidirectionally coupled chaotic Rössler sys-
tems. If the response system is faster than the drive
system than for sufficiently large coupling strength the
phases are locked in such a way that the phase of the re-
sponse system is ahead of the drive. This phenomenon
can lead to anticipating synchronization, which does
not require any delay terms either in the drive or re-
sponse systems.
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