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Abstract: Robust simplified adaptive controllers for continuous-time systems with
uncertainties and disturbances are considered. Sufficient conditions for closed-
loop stability and prescribed H∞ disturbance attenuation level of the proposed
simplified adaptive control scheme, are introduced, under an almost-strictly-
positive- realness requirement on the plant. A numerical example is given, which
demonstrates the proposed method.
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1. INTRODUCTION

Adaptive control methods cope with unknown
changing plant parameters by adjusting the con-
trol law to the varying plant on-line. They may
be divided into explicit (indirect) control, which
separately applies plant-parameters identification
and control schemes, and implicit (direct) con-
trol, where the control gains are directly com-
puted (without identifying the plant parame-
ters). Simplified Adaptive Control (SAC) is a
class of direct adaptive controller schemes which
has received considerable attention in the liter-
ature for continuous-time systems (Sobel, Kauf-
man and Mabius, 1982; Sobel, 1989; Kaufman,
Barkana and Sobel, 1998). Robustness of SAC
controllers facing polytopic uncertainties has al-
ready been established (Kaufman et al., 1998;
Yaesh and Shaked, 2006; Ben Yamin et al., 2006)
allowing application to real engineering problems
(see e.g. reference Yossef et al., 2004). The sta-
bility of continuous-time SAC is related to the
Strictly Positive Real (SPR) property of the con-

trolled plant. Bar-Kana (Bar-Kana, 1986) has
recently provided a proof of the fact that any
proper minimum-phase linear system with pos-
itive definite input-output feed-through matrix
D is Almost Strictly Positive Real (ASPR). In
addition, any strictly minimum-phase transfer
function with minimal realization A,B,C where
CB > 0 is ASPR(Kaufman et al., 1998).

In the present paper, the relationship between
optimal H∞ control and SAC will be discussed.
The objective is to use SAC while satisfying
some H∞ -norm bound γ. Note that SAC can
stabilize an uncertain system without knowing
the explicit system dynamics. Sufficient conditions
are derived for the stability of the closed-loop
dynamics of the SAC scheme with disturbance
attenuation level γ. These sufficient conditions are
expressed in terms of Bilinear Matrix Inequalities
(BMI), which can be solved using local iterations.
When the ASPR requirement is replaced by the
more restrictive SPR requirement, Linear Matrix



Inequalities (LMIs) are obtained. A numerical
example is given which illustrates the method.

Throughout the paper the superscript ‘T ’ stands
for matrix transposition, Rn denotes the n di-
mensional Euclidean space, Rn×m is the set of
all n × m real matrices, and the notation P > 0,
for P ∈ Rn×n means that P is symmetric and
positive definite. The trace of a matrix Z is de-
noted by tr{Z}. The convex hull defined by the
polytope vertices Ωj , j = 1, ...N is denoted by
Co{Ωj , j = 1, ...N} and col{a, b} for vectors a
and b denotes the augmented vector [aT bT ]T . In
symmetric block matrices we use ∗ as an ellipsis
for terms that are induced by symmetry.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following continues-time linear sys-
tem:

ẋ(t) = Ax(t) + B1 w(t) + B2u(t), x(0) = x0

z(t) = C1 x(t) + D11 w(t) + D12 u(t)
y(t) = C2 x(t) + D21 w(t) + D22 u(t)

(1)

where x(t) ∈ Rn is the system state, z(t) ∈ Rr

is the objective vector ,y(t) ∈ Rm is the plant
output, w(t) ∈ Rm is the exogenous disturbance
which is energy bounded and w(t) ∈ L2 and
u(t) ∈ Rm is the control input. A, B, C1 , C2,
D11, D12, D21 and D22 are constant matrices of
appropriate dimensions. We assume that D22 > 0.

Remark 1. In the general case, for any proper
but not strictly proper system, when D22 is not
positive definite but satisfies D22 + DT

22 > 0, we
define u(t) = DT

22û(t) and obtain the following
representation for (1)

ẋ(t) = Ax(t) + B1 w(t) + B̂2 û(t)

z(t) = C1 x(t) + D11 w(t) + D̂12 û(t)

y(t) = C2 x(t) + D21 w(t) + D̂22 û(t)

(2)

where B̂2 = B2D
T
22, D̂12 = D12D

T
22 and D̂22 =

D22D
T
22 > 0. We therefore, assume in the sequel,

without loss of generality, that D22 > 0.

It is required to achieve a stable closed-loop sys-
tem so that the standard H∞ cost function J
satisfies

J
∆
= ||z||22 − γ2||w||22 < 0 (3)

for any w(t) 6= 0 and w(t) ∈ L2 by employing
a SAC controller u(t) that is obtained by the
measurement feedback scheme

u(t) = −K(y(t))y(t), (4)

where K(y(t)) does not explicitly depend on the
system parameters (A, B1 etc.). Note that the
closed-loop system (1) is stable with a disturbance
attenuation level γ when (3) is satisfied.

To this end, we assume that there exists a feed-
back gain matrix Ke which achieves (3). We will
show in the sequel that using SAC (Kaufman et
al., 1998) we can calculate the gain Ke. It is em-
phasized here that SAC implementation requires
neither explicit knowledge of Ke nor the exact
knowledge of the system dynamics.

Consider the control law

u(t) = −Ke y(t) + ũ(t)
= −Ke (C2 x(t) +

D21 w(t) + D22 u(t)) + ũ(t)
(5)

where ũ(t) is an auxiliary input signal to be

determined in the sequel. We define K̂e = (I +
KeD22)

−1Ke and note that (I +KeD22)
−1 = (I−

K̂eD22). The algebraic loop for u(t) in (5) thus
results in

u(t) = −K̂e(C2x(t) + D21 w(t))+

(I − K̂eD22)ũk.
(6)

Substituting (6) in (1) and defining Ã ≡ (A −

B2K̂eC2) , C̃1 ≡ (C1 − D12K̂eC2) , B̃1 ≡ (B1 +

B2 (I − K̂eD22)D21) , B̃2 ≡ B2(I − K̂eD22) ,

C̃2 ≡ (I − D22K̂e)C2 , D̃11 ≡ (D11 + D12 (I −

K̂eD22)D21) , D̃12 ≡ D12 (I − K̂eD22) , D̃21 ≡

(D21 +D22 (I−K̂eD22)D21) and , D̃22 ≡ D22 (I−

K̂eD22), we obtain the closed-loop system

ẋ(t) = Ã x(t) + B̃1 w(t) + B̃2ũ(t)

z(t) = C̃1 x(t) + D̃11 w(t) + D̃12ũ(t)

y(t) = C̃2 x(t) + D̃21 w(t) + D̃22ũ(t).

(7)

It is required to assure that the closed-loop (7) is
stable for any w(t) ∈ L2 and has a disturbance
attenuation level γ.

3. MIXED H∞ AND SAC FOR
CONTINUOUS-TIME LINEAR SYSTEMS

Consider the following direct adaptive control
scheme known as SAC (Kaufman et al., 1998):

u(t) = −K(t) y(t) = −K̂(t)(C2x(t) + D21 w(t)) (8)

where, after solving the algebraic loop in u(t), it
is found that

K̂(t) = (I + K(t)D22)
−1K(t). (9)

The SAC gain adaptation formula is

K̇(t) = y(t)yT (t)− βK(t), K(0) = εI (10)



where β ≥ 0 is a scalar and ε is a positive scalar.
Next, an upper-bound on K̂(t) is calculated. Since
it was assumed that D22 > 0, we have

K̂(t)=(I+K(t)D22)
−1K(t)D22D

−1
22

=D−1
22 −(I+K(t)D22)

−1D−1
22

=D−1
22−F (t)

where F (t) = (D22 + D22K(t)D22)
−1 so that

F (t) > 0 and F (t) ≤ D−1
22 . Namely:

0 < K̂(t) ≤ D−1
22 . (11)

Remark 2. The equality in (11) is achieved when
K(t)→∞. Without the β-term in (10), K(t) may
steadily increase when y(t) 6= 0. With the β-
term, K(t) is obtained from a first-order filtering
of y(t)yT (t) and thus cannot diverge, unless y(t)
diverges (Kaufman et al., 1998).

Define δ(t) = Ke − K(t). The control law (8) is

obtained by substituting ũ(t)
∆
= δ(t)y(t) in (5).

Thus, we obtain

δ̇(t) = −K̇(t) = −y(t)yT (t) + βK(t) (12)

and the following holds:

δ(t)δ̇(t) = δ(t)(−y(t)yT (t) + βK(t))

= −ũ(t)y(t)T + βδ(t)K(t).
(13)

We are now in a position to state the main result
of this section.

Theorem 1. For an ASPR plant, the adaptive
scheme consisting of the plant (1), the control
law (8) and the gain adaptation formula (10)
has bounded gains and states and a disturbance
attenuation level γ, for any β ≥ 0 and any w(t) ∈
L2 if the following BMI holds:

Γ ≤ 0,
(14)

where

Γ
∆
=




ÃT P + PÃ PB̃2 − C̃2

T
PB̃1 C̃T

1

∗ −D̃22−D̃22

T
D̃21 D̃T

12

∗ ∗ −γ2I D̃T
11

∗ ∗ ∗ −I




(15)

Proof : In order to establish the results we con-
sider the radially-unbounded Lyapunov function
candidate

V (x(t),K(t)) = xT (t)Px(t)+

Tr{δ(t)δ(t)T } > 0.
(16)

Note that V (0,Ke) = 0 and V (x(t),K(t)) > 0
for all {x(t),K(t)} 6= {0,Ke}. Note also that

Vk(x(t),K(t)) → ∞ if ‖x(t)‖ → ∞ or ‖K(t)‖ →
∞. To obtain (3) we must have

V̇ (t) ≤ γ2wT (t)w(t)− zT (t)z(t) (17)

The derivative of (16) is given by

V̇ (t) = ẋT (t)Px(t) + xT (t)Pẋ(t)

−2Tr{δ(t) ˙δ(t)
T
}.

(18)

Define S = V̇ (t)−γ2w(t)T w(t)+zT (t)z(t). Then,

S = ẋT (t)Px(t) + xT (t)Pẋ(t)− 2Tr{δ(t) ˙δ(t)
T
}

−γ2w(t)T w(t) + zT (t)z(t).
(19)

Substituting (13) in (19), we have

S = ẋT (t)Px(t) + xT (t)Pẋ(t) − 2Tr{ũ(t)y(t)T }

+2βTr{δ(t)KT (t)} − γ2w(t)T w(t) + zT (t)z(t).

Using (7) we obtain

S = (Ã x(t) + B̃1 w(t) + B̃2ũ(t))T (t)Px(t)+

xT (t)P (Ã x(t) + B̃1 w(t) + B̃2ũ(t))

−ũ(t)T (C̃2 x(t) + D̃21 w(t) + D̃22 ũ(t))

−(C̃2 x(t) + D̃21 w(t) + D̃22 ũ(t))T ũ

+2βTr{δ(t)KT (t)} − γ2w(t)T w(t)

+(C̃1 x(t) + D̃11 w(t) + D̃12 ũ(t))T

(C̃1 x(t) + D̃11 w(t) + D̃12 ũ(t))

(20)

where use is made of the fact that tr(AB) =
tr(BA). Define

S = λ1(t) + λ2(t)

where:

λ1(t) =
[
xT (t) ũT (t) wT (t)

]
Γ




x(t)
ũ(t)
w(t)




λ2(t) = 2βTr{δ(t)KT (t)}

and where

Γ
∆
=

[
E11 PB̃2 − C̃2

T
+ C̃

T

1
D̃12 PB̃1 + C̃

T

1
D̃11

∗ −D̃22−D̃22

T

+ D̃
T

12
D̃12 D̃21 + D̃

T

12
D̃11

∗ ∗ −γ
2

+ D̃
T

11
D̃11

]
≤ 0

E11 = ÃT P + PÃ + C̃T
1 C̃1.

(21)

For β = 0 we obtain that λ2(t) = 0 and it is easy
to show that (21) may be rewritten as (14).

We next show that the system states and gains
are bounded also if β > 0. To this end, note that
if (14) is satisfied then λ1(t) ≤ 0 and that

λ2(t) = −2βTr{K(t)KT (t)}+ 2βTr{KeK
T (t)}

is not definite. But, λ2(t) (the second term of
V̇ (t)) is quadratic in K(t). Since K(t) may
steadily increase when y(t) 6= 0, the term
−Tr{K(t)KT (t)} becomes dominant in λ2(t)),
hence V̇ (t) becomes negative. This guarantees
that all adaptation variables are bounded (LaSalle’s
Theorem). QED



Remark 3. It follows from Theorem 1 that the
addressed SAC scheme is bounded even without
the β-term in (10). The β-term maintains the
adaptive gains small and prevents attaining un-
desirable high gains.

In the case where C1 = 0, D11 = 0 and D12 = 0
(no objective vector) it is easy to show that (14)
may be rewritten as

Γ
∆
=

[
Ẽ11 PB̃2 − C̃T

2 + γ−2PB̃1D̃
T
21

∗ −D̃22−D̃T
22 + γ−2D̃21D̃

T
21

]
≤ 0 (22)

where

Ẽ11 = ÃT P + PÃ + γ−2PB̃1B̃
T
1 P (23)

It follows from (22) that, under the existence of
exogenous disturbance w(t), bounded gains and
states are guaranteed if the system satisfies a con-
dition which is more conservative than the ASPR
condition but reduces to the ASPR condition in
the limit where γ tends to infinity. Moreover, note
that stability in the presence of nonzero measure-
ment noise (i.e. nonzero D21 and finite γ) requires
a large enough D22 > 0.

4. ROBUST SIMPLIFIED ADAPTIVE
CONTROL WITH UNCERTAINTIES AND

DISTURBANCE

We next extend the results of Theorem 1 to the
case where the A , B1 and B2 of the system (1)
are not exactly known. Denoting

Ω =
{

A B1 B2

}
(24)

where Ω ∈ Co{Ωi, i = 1, ...N}, namely,

Ω =

N∑

i=1

fiΩi for some 0 ≤ fi ≤ 1,

N∑

i=1

fi = 1(25)

where the vertices of the polytope are described
by

Ωi =
{

A(i) B
(i)
1 B

(i)
2

}
, i = 1, 2..., N. (26)

Next theorem describes conditions which assure
that the closed-loop system (1) is not only stable
but it also has a H∞ disturbance attenuation level
γ over Co{Ωi}.

Theorem 2. For an ASPR plant, the addressed
SAC scheme has a disturbance attenuation level
γ for any β ≥ 0 over Co{Ωi} if the following BMI
holds:

Φ
∆
=




Ê11 PB̃2

(i)
− C̃2

(i)T

PB̃1

(i)
C̃T

1

∗ −D̃22

(i)
−D̃22

(i)T

D̃21 D̃T
12

∗ ∗ −γ2 D̃T
11

∗ ∗ ∗ −I



≤ 0 (27)

where

Ê11 = Ã(i)T

P + PÃ(i) (28)

Proof : The latter is affine in A(i) and B
(i)
1 and

B
(i)
2 . We thus readily obtain by multiplying (27)

by fi and summing over i = 1, 2, ..., N that Φ ≤ 0
is satisfied over Ω.

Remark 4. It follows from the equivalence be-
tween the ASPR property and the minimum-
phase (MP) property (Kaufman et al., 1998) that,
under the existence of an exogenous disturbance
w(t), bounded gains and states are guaranteed
if the plant is MP at all the vertices. Namely,
one can establish equivalence between the ASPR
property of (1), which can be verified by the BMI
(22) where γ tends to infinity, and its minimum-
phase property which can be verified by the LMI

(H(i))T P + PH(i) < 0 , i = 1, 2, ..., N (29)

where

H(i) = (A(i) −B
(i)
2 D−1

22 C2) (30)

5. NUMERICAL EXAMPLE

In this section we present a numerical example to
demonstrate the application of the theory devel-
oped above. we consider a modified version of the
angle of attack/pitch-rate dynamics example of
(Gahinet et al., 1995). This example describes the
short period dynamics of a missile and was used
in (Gahinet et al., 1995) to study gain scheduled
control. The state-vector is x = [α, q]T where α
is the angle of attack and q is the pitch rate.
The plant input is the elevator angle δe, and the
plant output is the pitch-rate plus 0.01uk where
the latter term was added in order to assure the
ASPR property of the open-loop system. It should
also be noted that the nonzero but small D22 is
chosen which is no particular physical significance.
The plant is described by continuous time state-
space model for N = 4, where:

A=

[
−Zαj

1
−Mαj

0

]
, B1 = B2 =

[
0
1

]
,

C1 = C2 =
[
0 1

]
and D22 = 0.01

D11 = 0, D21 = 0.1, D12 = 0.01

and where the parameters of the four vertices are
Zα ∈ {0.5, 0.5, 4, 4} and Mα ∈ {6, 106, 6, 106}.



We note that the open-loop system is not SPR
throughout the convex combinations of these ver-
tices and that the first and third vertices corre-
spond to plants that are not even asymptotically
stable. Using (29) and Matlab’s LMI Toolbox, we
find that the plant is MP at all the four vertices
where a single

P =

[
0.2196 0.0014
0.0014 0.0039

]
(31)

was used to verify (A − BD−1C)T P + P (A −
BD−1C) < 0 at all vertices (or, equivalently, ver-
ifying the quadratic stability of the zero dynamics
of the plant). Our aim is to regulate the states of
this plant when

w(t) = sin(3t)e−0.01t.

Simulation results are given in Fig. 1. The initial
conditions are α = 10◦ and q = 5◦/sec. Fig.
1 describes the states versus time at all four
operating points. Evidently, all the states are
regulated to zero by the proposed control law (8)
and gain adaptation formula (10).

Fig. 2 describes the momentary minimum distur-
bance attenuation level γ as a function of the
(scalar, in our example) gain K̂e. Note that since
D22 = 0.01, we obtain (using (11))

0 < K̂e ≤ 100.

It can be seen from Fig. 2 that γ sharply grows
at low adaptive gain (K̂e < 15) and at high

adaptive gain. In fact, γ tends to infinity when K̂e

tends to D−1
22 . The best γ is 0.82, and is achieved

when K̂e = 23. Thus, if good H∞ performance
is desired, for example γ < 2, one may adopt
the practice of initializing the gain adaptation by
K̂(t) ≈ 15 and limit it to K̂(t) < 87.

6. CONCLUSIONS

In this paper the existing theory of Simplified
Adaptive Control has been generalized to systems
with uncertainties and H∞ disturbance attenua-
tion requirements. The results assure closed-loop
stability and some disturbance attenuation level γ
under the requirement of Almost-strictly-positive-
realness of the systems (or, equivalently, minimum
phase). A similar condition, which is verified using
Linear Matrix Inequalities, is shown to be valid
also for system with polytopic uncertainties.

This results are illustrated via an example, taken
from the field of flight control. This results encour-
age further research, such as simplified adaptive
control with exogenous disturbance and measure-
ment noise for discrete-time systems.
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