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Abstract

Diagnostics of epileptic activity is usually based on vi-
sual and/or automated analysis of brain electromagnetic
signals, including EEGs, MEGs, local field potentials
and single/multi neuron unit recordings. In primary gen-
eralized epilepsies the pathological activity is detected
in both hemispheres. However, in some animal models
this was not tested properly. Recently, we have found
that in pentylenetetrazol rat model of spike-wave dis-
charges (SWDs) in half of subjects a significant part of
SWDs was expressed in the cortex of only one hemi-
sphere. The purpose of this paper is to test whether such
discharges differ from background activity. In this paper
we use both indirected (phase coherence index, mutual
information function) and directed (nonlinear adapted
Granger causality) nonlinear measures which became
popular in neuroscience last decades. Studying con-
nectivity changes accompanying discharge initiation we
found increase in interhemispheric coupling similar to
that found previously between different cortical regions
of the same hemisphere, with no specific preictal con-
nectivity dynamics distinguishable. We also showed
that there was no significant difference in interhemi-
spheric connectivity between unilaterally and bilaterally
expressed discharges. In pentylenetetrazol rat model of
SWDs there is a significant increase in connectivity be-
tween hemispheres of somatosensoty cortex during ictal
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stage. This increase is expressed at the same level for
both unilaterally and bilaterally visible discharges.
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1 Introduction

Absence epilepsy is usually manifested in spontaneous
recurrent spike-wave discharges (SWDs) recorded in
both scalp EEG and intracranial brain local field po-
tentials (LFPs). Both thalamus and cortex play signifi-
cant role in SWD generation [Russo et al., 2016]. Ani-
mal models (mostly strains of genetic models: WAG/Rij
rats [Coenen and van Luijtelaar, 2003] and GAERS rats
[Vergnes et al., 1987]) play the extremely important role
in investigation of absence epilepsy since they provide
possibility to measure all necessary brain structures with
high signal quality. Since SWDs are always considered
as primary generalized discharges [Berg et al., 2010;
Scheffer et al., 2017], their recording in rat models is
usually done from a single hemisphere. This approach
allowed to investigate involvement of different thalamic
nuclei [Liittjohann and van Luijtelaar, 2012] and cortical
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regions [van Rijn et al., 2010]. However, this also made
a large time gap in investigation of crosshemisphere in-
teractions accompanying SWDs from very early works
[van Luijtelaar and Coenen, 1986]. Coupling between
different brain structures of the same hemisphere was
studied using modern techniques such as transfer en-
tropy [Schreiber, 2000], phase coherence index [Mor-
mann et al., 2000] or nonlinear adapted Granger causal-
ity [Marinazzo et al., 2006; Kornilov et al., 2016], see
[Liittjohann and van Luijtelaar, 2012; Sysoeva et al.,
2014; Liittjohann and van Luijtelaar, 2015; Sysoeva
et al.,, 2016b; Sysoeva et al., 2016c] for instance. In
contrary, dynamics of interhemispheric connectivity ac-
companying SWDs in rats remains mostly unclear. The
main reason for this is that most modern techniques for
connectivity detection were developed for last 25 years,
i.e. at the time when synchronous pathological activ-
ity in both hemispheres during SWDs was considered to
be proven and therefore, signals from both hemispheres
were not measured from SWD models.

In addition to genetic models, pharmacological induc-
tion of SWDs is used sometimes. The main advantage
of the pharmacological models is the possibility to ob-
tain measurements from the same animal before and af-
ter initiation of absence-like activity. Administration of
low doses of the popular proepileptic drug pentylenete-
trazole (PTZ) leads to generation of recurrent SWDs in
different rodents: rats [Marescaux et al., 1984], mice
[Medina et al., 2001] and guinea pigs [Solmaz et al.,
2009], though higher doses of the same substance cause
tonic-clonic seizures [Klioueva et al., 2001]. It is in-
teresting that there is a single work [Myslobodsky and
Rosen, 1979] pointing to possible asymmetry in SWD
development for PTZ invoked seizures. In this paper,
the authors counted number and length of seizures and
established that asymmetry as well as symmetry in the
seizure length (or even existence) are both typical.

In our previous research, we found that PTZ-induced
SWDs can appear in only one or in both hemispheres
[Ershova et al., 2023] supporting the results published in
[Myslobodsky and Rosen, 1979]. The effect was even
more complex: some animals mainly exhibited bilater-
ally symmetric SWDs while others showed both sym-
metric and asymmetrically developed SWDs up to the
cases when SWD in one hemisphere was absent. All
cases could be recorded in a single animal. Therefore,
further we assume that asymmetric discharges are dis-
charges differed in length and amplitude in two hemi-
spheres including the case when there is no discharge in
one of hemispheres. In our case these results were ob-
tained using automatic seizure detection algorithm with
such algorithms being developed for SWD detection last
decades and unavailable in 1979 (so the authors of [Mys-
lobodsky and Rosen, 1979] were to count seizures by
eye).

Since SWDs are usually the result of pathological syn-
chronous activity of the entire thalamocortical system, it
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is necessary to answer whether the observed differences
in the SWD pattern are the result of crosshemispheric
connectivity dynamics, or this is a result of some lo-
cal neural activity preventing the appearance of SWDs
in one hemisphere. However, to consider this issue we
have to determine what are the coupling differences be-
tween discharges and background activity, as it was in-
vestigated for inrahemispheric connections. To answer
this question, we used a number of methods for con-
nectivity estimation: phase synchronization index [Mor-
mann et al.,, 2000], mutual information function cal-
culated following nearest neighbors approach [Kraskov
et al., 2004] and nonlinear adapted Granger causality
with polynomial functions [Sysoeva et al., 2014; Ko-
rnilov et al.,, 2016] and models constructed based on
BIC criterion [Schwarz, 1978]. Use of mostly nonlin-
ear methods is based on the idea that SWDs are highly
nonlinear phenomenon in which second harmonic of the
main rhythm (and also higher ones) may be as much
valuable as the first one, with nonlinear interaction be-
tween signal components on different frequencies be-
ing able to significantly contribute to the connectivity
[Dolinina et al., 2024]. The recent theoretical studies
for different quadratic and cubic nonlinearities [Turuk-
ina, 2024] show that interactions between modes in dif-
ferent ranges (actually, their higher harmonics) may play
significantly effects the regime of oscillations in the net-
WOT.

Actually, the used measures assume that the considered
signals are generated by some nonlinear oscillator. So,
the alternative approach is to write out some differential
equations describing the system and adjust their parame-
ters to the data as it was proposed previously using both
methods of adaptive control [Plotnikov, 2024] and sys-
tem identification [Sysoev and Bezruchko, 2021]. We
skipped these approaches here since they rely very heav-
ily on a specific type of model which is unknown for the
considered case.

2 Data and methods
2.1 Experimental data

Experiments were performed on male Wistar rats, 6—7
months of age, obtained from the Stolbovaya Animal
Breeding Center (Moscow). Electrical activity of the
neocortex was recorded using electrodes (steel screws)
implanted in symmetrical areas of the frontal cortex of
both hemispheres at the coordinates: AP 2; ML +2;
DV 1 [Paxinos and Watson, 2006]. A steel screw lo-
cated above the cerebellum was used as an indifferent
electrode. The electrodes were implanted under anes-
thesia (chloral hydrate, 380 mg/kg) two weeks before
the experiments. Electrical activity of the cortex was
recorded using a 4-channel amplifier and an ADC (E14-
440, LCard, Russia) in awake freely moving animals. In-
traperitoneal injection of the convulsant PTZ at a dose of
40 mg/kg was used to induce spike-wave dis charges. At
the end of the experiment, histological analysis was per-
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Figure 1. Example of discharge in rat models of epilepsy. The col-
ored bars on the graph show the intervals for which the connectivity
was analyzed: red color — one second of background activity, blue
color — one second exactly before the seizure start (preictal epoch),
orange color — one second just after the seizure start (ictal epoch) and
green color — one second just after the seizure end (postictal or maybe

background activity).

Table 1. Number of symmetric and asymmetric discharges.

Rat No. 1|3 (5| 7]81]09
Symmetric | 4 | 5 | 27 | 27 | 27 | 27
Asymmetric | 4 | 5 | 23 | 27| 8 | 13
8110 | 50 | 54 | 35 | 40

Total

formed to determine the localization of recording elec-
trodes.

In the present work, recordings of six animals were
considered; the duration of all recordings was at least
1 h, being 90 min in average. We chose these six ani-
mals from nine reported previously [Ershova et al., 2023]
due to they have both symmetric and asymmetric dis-
charges, see Table 1. To make the bridge to the previous
study, we preserved the numbers of animals, therefore
animals No. 2, 4 and 6 are absent. The discharges were
detected using the automated approach proposed in [Er-
shova et al., 2023].

Several intervals were chosen to compare discharge
with background activity. They are shown in the Fig. 1:
one second of background activity, one second before
the start of discharge (preictal epoch), lone second after
the start of discharge (ictal epoch) and one second after
the end of discharge (postictal epoch).

The typical discharges with spectrograms are plotted
in Fig. 2. These series and spectrogram have a number
of similarities with series and spectrograms of genetic
rat models. First, the main frequency is about 6.5-7 Hz
for all considered animals which is very close to what
is known for GAERS rats as it was mentioned previ-
ously [Marescaux et al., 1984]. Second, one can see up
to five harmonics of the main frequency in both hemi-
spheres, which is very similar to what is known from ge-
netic models [Coenen and van Luijtelaar, 2003; Vergnes
et al., 1987], with very similar plots for different chan-
nels from the single hemisphere of WAG/Rij rats be-
ing published in [Sysoeva et al., 2016c]. Third, there
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is a slow decrease of the main frequency which may be
better seen when following the dynamics of the second
and, especially, third harmonic during the discharge, see
Fig. 2 c,d. The similar decrease was also detected for
WAG/R]j rats in many works [Liittjohann and van Lui-
jtelaar, 2015]. Forth, the amplitude of SWDs in the con-
sidered model is from two to six times higher than for
background activity, matching what was found for ge-
netic models.

2.2 Phase coherence index

The phase coherence index I, ,, is a very popular mea-
sure of signal similarity proposed in [Mormann et al.,
2000]. First, one has to establish signal phases (, and
¢, for both observed signals (time series) {z;}; and
{y;}¥| respectively. To do this, Hilbert-Huang trans-
form is usually applied [Huang et al., 1998] to both sig-
nals separately, with other approaches also being possi-
ble. Then, the index I, , is calculated as follows:

Ly = |(exp (j(eat) = 0y (t),cy ] (D

,,,,,

where j stays for imaginary unit.

If the phases ¢, and ¢, behave completely inde-
pendently (no phase synchrony at all), the difference
g (ti) — y(t;) is distributed uniformly over the semi-
interval [0; 27), and I, , — 0 for N — oo. If the differ-
ence @z (t;) — py(t;) = const Vi, then I, , = 1 (com-
plete synchrony). If there is some nonuniform distribu-
tion of ¢, (¢;) — ¢, (t;) with some maximum, we obtain
0 < I, < 1, reaching some nonzero value (partial syn-
chrony).

It must be noted that I, ,, actually reveals signal phase
synchrony despite of its reason. Both bidirectional and
unidirectional coupling leading to synchronization and
synchronization by means of external driving may lead
to similar values. Also, there is no safe way to detect the
coupling direction by this measure, as it was shown in
[Vakorin et al., 2013].

2.3 Mutual information function

The mutual information function M I, , between two
samplings (in our case — time series) {z;}}, and
{y:}I¥.| characterizes the degree of series similarity. Ac-
tually, it is a best way to estimate the nonlinear similarity
of two time series if frequency resolution is not neces-
sary or cannot be obtained due to insufficient data. The
primary formula for calculation of M1, , is based on its
definition by means of individual and joint entropies:

MI,, =H,+H,—H,,. )

Since straightforward approaches based on splitting
the phase space into bins are very inefficient we used the
technique proposed in [Kraskov et al., 2004] which oper-
ates with Kazachenko-Leonenko entropy [Kozachenko
and Leonenko, 1987] and uses nearest neighbour count
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Figure 2. Example of symmetrical and asymmetrical discharges in a rat models of epilepsy. The subfigs. (a,b) show a time series of local

field potentials for symmetrical discharge from the left (a) and right (b) brain hemispheres recorded from frontal cortex, the subfigs. (c,d) are

spectrograms for these discharges. The subfigs. (e,f) show a time series of local field potentials for asymmetrical discharge from the left (e) and

right (f) brain hemispheres recorded from frontal cortex, the subfigs. (g,h) are spectrograms for these discharges.

to construct the estimator. The calculation formula (3) is
as follows:

M1y = 6(N) + 6(K) = (na() +1) o
)+ 1)),

Fo(ny (D) + 1)),y N
where [V is the series length (sampling size), K is the
number of the neighbor (the simplest choice is K = 1),
ng (%) and n,(¢) are the numbers of “partial” neighbors
of the i-th point by X or Y direction only, ¥(n) is
digamma function.

2.4 Adapted nonlinear Granger causality

The adapted nonlinear Granger causality method was
used here as a primary tool for directed connectivity
estimation. This method was proposed specifically for
the absence seizure study in [Sysoeva et al., 2014].
In general, the idea to adapt the mathematical models
and methods from different fields to specifics of neuro-
science was discussed multiple times (see the recent re-
view [Babich et al., 2025] for details). The method is
based on construction of empirical predictive models in
the time window, adopting the ideas from [Hesse et al.,
2003], but using nonlinear models of the form (4) with
specially selected parameters.

x'/n,+7- = f ((E»,“l'n,l, sy mnf(Dsfl)l) ) (4)

where 7, , . is the predicted value corresponding to the
measured value x,, -, f is a general polynomial of order
P from D, variables, X,, = (T, Tn_1; s Tn—(D,—1)1)

is a state vector as defined by means of the method of
delays [Packard et al., 1980].

Method of delays is a classical approach to reconstruct
the high-dimensional state vector {xn}gz_l(Ds_l)l from
the scalar time series {z,}_; by shifting this series
back in time. To obtain a D-dimensional vector one has
to make (D5 — 1) times shifts with a lag [. Unfortu-
nately, this approach usually leads to very large model
with many coefficients, which cannot be reliably esti-
mated from the provided data. in [Kugiumtzis, 1996]
it was shown that nonuniform embedding (using differ-
ent lags for each time shift) may significantly reduce the
model dimension. Another possible way to solve this
problem is using a separate prediction length parameter
7 [Sysoeva and Sysoev, 2012], which is the time interval
between the last data point used for vector reconstruction
and the point to be predicted. To estimate the model di-
mension and the polynomial order D we used Bayesian
information criterion [Schwarz, 1978]. Model coeffi-
cients were estimated using the least-squares routine by
minimising the squared prediction error (4), that mea-
sures the difference between the predicted values ), , .
and the observed ones ,, 4 -:

N—T
1 2 .
e = o3 Z (20, 4r — Tngr)” — min, (5)
S n=(Ds—1)I

. . . . N
where o2 is the variance of the time series {z,} _;,

N’ = N — 17— (Dg — 1)l is the efficient length of the
time series.
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Figure 3. Histogram of mean values M I for baseline activity (red),
preictal activity (blue), ictal activity (orange), and postictal activity
(green).

Second, a bivariate model (6) was constructed from
both time series {xn}nN:1 and {yn}f:[:l:

x;{+7_ = g (xnv xnfl) st axn—(DS—l)lv (6)
Yns -y Yn—(Do—1)1) 5

where g is a general polynomial of the order P (the same
as for the model (4)), D, is a dimension of the state vec-
tor Yo = (Yn,Yn—1--s Yn—(Do—1)1) Teconstructed from

the scalar time series {yn}r[j:l. So, the total dimen-
sion of the bivariate model can be computed as D; =
Dy + D,, and its squared prediction error is denoted as
€.

Third, the value of the prediction improvement PI,
that is considered as a main characteristic of the Granger

causality method, was computed following (7).
g2
PI=1- —;, @)
5‘S

In this study, several sets of parameters satisfying the
criteria from [Sysoeva and Sysoev, 2012; Sysoeva et al.,
2012; Kornilov et al., 2016] were tested to find the op-
timal sensitivity/specificity ratio. As a result, the pre-
diction length was empirically chosen to be 7 = T/8,
where T' is a main time scale of oscillations. For ab-
sence seizures, for which the main frequency is usually
from 6 Hz to 9 Hz, so 0.11 < T < 0.17 s. The other
parameters were chosen automatically according to the
Schwarz’s (BIC) criterion [Schwarz, 1978]: the dimen-
sion of the individual model D; = 4, the polynomial
order P = 2, and the lag in the model | = T'/6. The cal-
culations were carried out in non overlapping time win-
dows of two seconds length (2000 discrete values, about
16 characteristic periods).
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The coefficient of prediction improvement (PI €
[0; 1]) is used as a mathematical characteristic of Granger
causality. Prediction improvement PI = 0 corresponds
to no coupling in the considered direction, PI — 1 cor-
responds to the case when all possible coupling terms
are taken into account properly. Theoretically, the sit-
vations PI = 0 and PI = 1 are achievable, but in
such a case the model structure should describe the ob-
ject completely [Kornilov et al., 2016]. Practically, val-
ues 0 < PI < 1 are obtained for both presence and
absence of actual coupling. The main reasons of such
method imperfection are finite time resolution [Smirnov,
2014], incorrect choice of method parameters, finite se-
ries length, noise, complex nonlinearity in the studied
system and other factors [Smirnov, 2013]. Therefore, it
is usually stated that an absolute value of P1 carries little
information about the degree of connectivity. However,
using the same model throughout the study, interpreta-
tion of increase or decrease of PI makes sense, with
providing possibilities to track changes in connectivity
accompanying different processes in the brain.

2.5 Statistical evaluation of connectivity estimates

To quantitatively describe differences in the dura-
tion of discharges, we used two well known statistical
tests: the Kolmogorov—Smirnov test (further, KS-test
for brevity) and the Mann—Whitney test (further, MW-
test for brevity). Both approaches test the hypothesis
that two samples are taken from the same distribution.
Both methods produce a p-value, the probability of be-
ing wrong, refuting the hypothesis that the distributions
are the same. Generally, when p-values are small, the
conclusion is made that the differences are significant,
while when p-values are relatively large, for example,
p > 0.05, the initial hypothesis is accepted and the sam-
ples are considered to belong to the same distribution.
All calculation were performed using scipy.stats
framework [Virtanen et al., 2020].

3 Results

3.1 Searching for connectivity during discharges
and background activity

We applied the nonlinear adapted Granger causality
and mutual information function to four intervals: back-
ground activity (colored in red in Fig. 1), preictal activity
(colored in blue in Fig. 1), ictal activity (colored in or-
ange in Fig. 1), and postictal activity (colored in green
in Fig. 1). Mean values (PI) and (M) averaged over
all episodes for each rat separately are presented in the
table 2 and in Fig. 4 for nonlinear adapted Granger func-
tion and Fig. 3 for mutual information function.

Analyzing results of mutual information function cal-
culation, it can be concluded that the discharge is dif-
ferent at the level p = 0.01 and lower from the back-
ground in almost all rat, except in rat No. 1 for which
no significance difference detection can be explained by
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Table 2. Mean values for the nonlinear adapted Granger causality and

mutual information function.

1 3 5 7 8 9
GCL-R
baseline | 0.07 | 0.02 | 0.02 | 0.03 | 0.06 | 0.01
preictal | 0.07 | 0.07 | 0.03 | 0.01 | 0.05 | 0.02
ictal 0.18 | 0.05 | 0.07 | 0.11 | 0.10 | 0.15
postictal | 0.04 | 0.03 | 0.03 | 0.01 | 0.03 | 0.03
GCR-L
baseline | 0.07 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03
preictal | 0.05 | 0.07 | 0.02 | 0.02 | 0.04 | 0.03
ictal 0.07 | 0.07 | 0.10 | 0.07 | 0.07 | 0.07
postictal | 0.04 | 0.05 | 0.01 | 0.02 | 0.01 | 0.02
MI
baseline | 1.43 | 0.78 | 0.71 | 0.69 | 0.88 | 0.81
preictal | 1.04 | 1.06 | 0.45 | 0.84 | 0.78 | 0.50
ictal 1.08 | 1.38 | 1.04 | 1.15 | 1.25 | 0.95
postictal | 0.06 | 0.45 | 0.65 | 0.54 | 0.85 | 0.74
0.200 (a) Left to right (b) Right to left
’ B < baseline > BN < baseline >
0.1751 B <preictal > 1 B <preictal >
0.150 <ictal > ] <ictal >
s < postictal > mmm < postictal >
0.125
& 0.1001 a
0.075
0.050
0.025 1
0.000- -
1 3 5 7 8 9 1 3 5 7 8 9
Rat number Rat number

Figure4. Histogram of mean values of I for baseline activity (red),
preictal activity (blue), ictal activity (orange), and postictal activity
(green). The subfig. (a) shows P1 in the direction from left to right,
the subfig. (b) — in the direction from right to left.

a small number of discharges, see Tab. 3. This result
is in a good correspondence with what was previously
obtained for genetic rat models when considering con-
nectivity dynamics between different areas of neocortex
in a single hemisphere [Sysoeva et al., 2016¢; Sysoeva
et al,, 2016a]. At the same time, there is no signifi-
cant difference between preictal and background activ-
ity. Since for three of six considered rats M I for back-
ground even larger than for preictal, see Tab. 2, this fact
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is unlikely due to insufficient data. There could be two
main explanations: first is that preictal changes in con-
nectivity dynamics which are actually responsible for
SWD initiation are mostly localized inside the particu-
lar hemisphere. This means that thalamocortical loops
in both hemispheres act mostly independently, but with
the same main dynamical patterns. Such an explana-
tion well matches the modern concepts of SWD mech-
anisms which consider intrahemispheric couplings to be
enough for SWD initiation [Liittjohann and van Luijte-
laar, 2015]. The other explanation is that interhemi-
spheric changes in PTZ model are different to those in
the genetic ones and humans; this thesis may be con-
sidered only by new experimental research with genetic
models.

The results of the Granger causality mostly support the
outcomes obtained using the mutual information func-
tion. First, if one excludes the rat No. 1 due to insuf-
ficient data, both statistical test indicate significant and
bidirectional increase in coupling during SWDs in com-
parison to background (the only exception is MW-test i
the direction from right to left for rat No. 3, for which
p = 0.1). For Granger causality, the significance level is
even higher (p < 10~?) than for the mutual information
function. This matches well the previous investigations
in which WAG/Rij rats were considered [Sysoeva et al.,
2016b]. Second, the KS test (which is more conserva-
tive and usually requires more data) does not provide sig-
nificant differences between connectivity in background

time and in the preictal epoch, as was shown using the
mutual information function, the MW-test (which is usu-

ally considered to be more sensitive for small samplings)
indicated significant increase in coupling in both direc-
tions for the rat No. 3 and significant decrease in one
direction for the rat No. 7 at the level p = 1073, Since
the sampling for the rat No. 3 is relatively small, this may
be an artifact of the method.

3.2 Search for connectivity in asymmetric dis-
charges

First of all, we applied the mutual information func-
tion to both types of discharges activity to study the sig-
nal similarity between homotopic cortical regions of two
hemispheres. The mean values (M) averaged over all
episodes for each rat separately are presented in Table 4
(first and second rows are for symmetric and asymmet-
ric discharges, respectively, while the fifth row is for the
baseline activity) and in Fig. 5a. The values obtained
for symmetric and asymmetric discharges can be differ-
ent, but all of them lie in the same range. Statistical test:
The Kolmogorov—Smirnov test (third row in the table 4)
and the Mann-Whitney test (fourth row in the table 4) in-
dicate that the obtained M I values cannot be considered
as belonging to different distributions with p-value being
> 0.1 for all animals for both tests. This means that us-
ing mutual information we cannot detect any difference
in signal similarity between the considered signals from
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Table 3. Statistical tests for the nonlinear adapted Granger causality and mutual information function.
1 3 5 7 8 9

GCL-R
KS-preictal 0.7 0.2 0.8 0.4 0.8 0.6
MW-preictal | 0.3 1073 | 0.5 1073 | 0.5 0.01
KS-ictal 0.9 10710 | 1073 10713 | 1078 1010
MW-ictal 03 | 107 | 107° | 107 | 1071 | 10710
KS-postictal 0.2 0.7 0.5 0.5 0.5 0.2
MW-postictal | 1072 | 0.5 0.2 0.2 0.2 105
GCR-L
KS-preictal 0.3 0.1 0.9 0.9 0.9 0.9
MW-preictal | 0.1 1072 | 0.5 0.5 0.5 0.5
KS-ictal 0.9 0.1 10—® 10710 | 10710 | 10710
MW-ictal 0.5 1073 106 10710 | 10710 | 10710
KS-postictal 0.01 0.01 0.5 0.9 0.8 0.9
MW-postictal | 1073 | 1073 | 0.3 0.8 0.5 0.8
MI
KS-preictal 0.5 0.5 0.1 0.3 0.2 0.2
MW-preictal | 0.3 0.3 0.1 0.1 0.2 0.1
KS-ictal 0.2 107° 107° 107° 107° 0.01
MW-ictal 0.1 107° 10712 | 10~ | 1075 | 0.01
KS-postictal | 1073 | 0.8 0.7 0.9 0.9 0.2
MW-postictal | 1075 | 0.5 0.3 0.8 0.8 0.1

Table 4. Testing for equality distributions of mutual information
function <M I ) obtained for symmetric SWDs <M 1 S>, asym-
metric SWDs <M]a> and baseline activity <be>‘ KS-testq
means Kolmogorov—Smirnov test for discharges, KS-test, means
Kolmogorov—Smirnov test for baseline activity, MW-testy means
Mann—Whitney test for discharges, MW-test, means Mann—Whitney

test for baseline activity.

Rat No. 1 3 5 7 8 9
(MIgy | 1.05| 132|114 | 1.08 | 1.11 | 0.75
(MI,) | 1.29 | 1.22 | 1.27 | 1.12 | 1.22 | 0.89

KS-testy | 0.70 | 0.80 | 0.10 | 0.30 | 0.20 | 0.20

MW-testq| 0.30 | 0.50 | 0.10 | 0.10 | 0.20 | 0.10

two hemispheres, though the signal shape and amplitude

differ significantly.
Since M did not reveal the difference in connectiv-

ity between symmetric and asymmetric discharges, we
calculated phase synchronization index. Unfortunately,
this could not be done for the baseline activity since there
was no possibility to establish a phase properly (the base-
line activity does not have one main frequency). The
results were presented in Table 5 and in Fig. 5b. One
can see that PS also reveals no difference between sym-
metric and asymmetric discharges with p > 0.2 based
on both the Kolmogorov—Smirnov and Mann—Whitney
tests. This is interesting due to the fact that in the asym-
metric discharges there was no oscillation shape typical
for SWDs in one hemispheres. Nevertheless, the fre-
quency of the main rhythm occurred to be same in both
channels, providing possibility to establish the phase.
And the results were statistically indistinguishable with
p = 0.1.

Since non-directional methods were not able to re-
veal the difference in interhemispheric connectivity be-
tween symmetric and asymmetric discharges, we applied
nonlinear adapted Granger causality following the pa-
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Figure 6. Histogram of mean values P for symmetric discharges
(blue) and asymmetric discharges (pink). The subfig. (a) shows P1 in
the interhemispheric connectivity estimates for the direction from left

to right, the subfig. (b) — in the direction from right to left.

Table 7.
ment <PI > obtained for symmetric discharges <PI S>, asymmet-
ric discharges <P[a> and baseline activity <be>. KS-testq
means Kolmogorov—Smirnov test for discharges, KS-test, means

Testing for equality distributions of prediction improve-

Kolmogorov—Smirnov test for baseline activity, MW-testy means
Mann—Whitney test for discharges, MW-test, means Mann—Whitney
test for baseline activity. P values were obtained using nonlinear
adapted Granger causality in the direction from right to left hemi-

sphere.
Rat No. 1 3 5 7 8 9
(PIs) 0.05 | 0.08 | 0.07 | 0.08 | 0.07 | 0.07
(PI,) 0.07 | 0.06 | 0.10 | 0.07 | 0.05 | 0.04
KS-testg | 0.10 | 0.30 | 0.40 | 0.90 | 0.10 | 0.10
MW-testq| 0.20 | 0.20 | 0.10 | 0.80 | 0.10 | 0.10
5 00.(8) MI (b) PS
< symmetric > < symmetric >
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Figure 5. Histogram of mean values M in (a) and PSS in (b) for

symmetric discharges (blue) and asymmetric discharges (pink).
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Table 5.
timates <PS> obtained for symmetric (P SS> and asymmetric

Testing distributions of phase synchronization index es-

<P Sa> discharge for equality. KS-testy means Kolmogorov—Smirnov
test for discharges, MW-testy means Mann—Whitney test for dis-

charges.
Rat No. 1 3 5 7 8 9
(PSs) 1 0.78 1092|087 | 0.89 | 0.86 | 0.84
(PS,) | 0.83|0.89| 0.87 | 0.88 | 0.87 | 0.87
KS-testq | 0.80 | 0.30 | 0.90 | 0.70 | 0.80 | 0.50
MW-testy| 0.70 | 0.20 | 0.70 | 0.80 | 0.90 | 0.30

Table 6. Testing for equality distributions of prediction improve-
ment <PI > obtained for symmetric discharges <PI S>, asymmet-
ric discharges (P1I,) and baseline activity (PIp). KS-testg
means Kolmogorov—Smirnov test for discharges, KS-test, means
Kolmogorov—Smirnov test for baseline activity, MW-testy means
Mann—Whitney test for discharges, MW-test, means Mann—Whitney
test for baseline activity. IPI values were obtained using nonlinear
adapted Granger causality for left to right discharge.

Rat No. 1 3 5 7 8 9
(PIgy | 0.05|0.16 | 0.11 | 0.11 | 0.10 | 0.04
(PI,) |0.12]0.13|0.11 | 0.07 | 0.12 | 0.05

KS-testq | 0.40 | 0.80 | 0.80 | 0.50 | 0.40 | 0.20

MW-testy| 0.50 | 0.80 | 0.80 | 0.50 | 0.60 | 0.20

per [Sysoeva et al., 2014]. The idea was that the mu-
tual information and phase synchronization index esti-
mates might be similar for symmetric and asymmetric
discharges because both unidirectional and bidirectional
coupling was able to provide the same level of signal
similarity or synchrony.

The results from the tables 6 and 7 were also plotted in
Fig. 6, where the mean P values from left to right were
shown in the subplot (a) and from right to left — in the
subplot (b).

Though Granger causality occurred to be able to de-
tect changes in connectivity caused by discharge, there
was no significant connectivity difference between sym-
metric and asymmetric discharges, indicating that even
the specialized nonlinear directed approach was not able
to detect connectivity difference. This may mean that
the difference in the signal shape between symmetric
and asymmetric discharges is a result of different intra-
hemispheric connectivity in two hemispheres rather than
crosshemipheric interactions. To address this issue one
have to measure more signals from both hemishperes
(three or more symmetric channels) to be able to detect
and describe differences in intrahemispheric connectiv-
ity as well as control the signal asymmetry.
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4 Conclusions and discussion

First, we found that crosshemispheric connectivity in
the neocortex significantly increased during pharmaco-
logically induced SWDs in comparison to baseline ac-
tivity. This increase is similar to what was previously
found for intrahemispheric cortical connectivity in ge-
netic model of absence epilepsy [Sysoeva et al., 2016c¢].
At the same time, there was no statistically reliable in-
crease for preictal epoch (two seconds before the SWD).
Absence of the preictal connectivity increase may be
caused by fundamental factors, since thalamocortical
loop responsible for SWDs is usually considered to work
independently in both hemispheres [Coenen and van
Luijtelaar, 2003], with crosshemispheric interactions be-
ing the secondary effect. However, this issue needs addi-
tional investigation using simultaneous recordings from
thalamic nuclei and somatosensory cortex in both hemi-
spheres.

Second, we found that there is no significant difference
in coupling estimates between SWDs symmetrically ex-
pressed in both hemispheres and SWDs expressed only
in one hemisphere. Since we used three different con-
nectivity measures this means that interhemispheric con-
nectivity is insufficient for SWD expression, with SWD
appearance being determined by other mechanisms, for
instance, corticothalamic connectivity mechanisms in
the particular hemisphere. We have to notice that this
outcome is quite preliminary and the issue cannot be
solved in the frames of the current study. Simultaneous
measurement of both thalamic and cortical channels in
both hemispheres are necessary to study this issue prop-
erly.

Since we had only two channels, we used only meth-
ods for pairwise signal analysis. If more signals were
obtained, the special additional techniques to distinguish
between direct and mediated coupling [Chen et al., 2004;
Kornilov and Sysoev, 2018] should be used when apply-
ing Granger causality. For phase synchronization index
and mutual information function such approaches are not
relevant due to they measure the signal similarity regard-
less its nature rather than directed connectivity.

Also we have to notice that there is no full confidence
that results obtained from PTZ rat models can be com-
pletely extrapolated to other animal models of SWDs in-
cluding genetic models as well as to humans. The ad-
ditional research is strictly necessary to reveal the pos-
sible differences. There are two arguments supporting
that the achieved results can be extended outside of the
scope of the current investigation. First, the investigated
SWDs were detected by an automatic procedure [Er-
shova et al., 2023]. The same algorithm easily detects
most SWDs for WAG/Rij and GAERS rats, which sup-
ports that the considered SWDs from the point of view
of signal shape, spectrum and structure are the same as
in genetic rat models. This also let us use the param-
eters of the Granger causality method very similar to
those used previously when studying SWDs of WAG/Rij
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rats. Nevertheless, we performed the complete model
parameter fitting as it was proposed in Ref. [Sysoeva
and Sysoev, 2012; Sysoeva et al., 2014] for these data
independently. Second, when comparing prediction im-
provement values for intercortical interactions obtained
for SWDs and baseline activity we observed the increase
during SWDs similar to the increase detected previously
for WAG/R]j rats [Sysoeva et al., 2016¢; Sysoeva et al.,
2016a], though the papers [Sysoeva et al., 2016¢; Syso-
evaet al., 2016a] studied different cortical regions within
the same hemisphere while we analyzed connectivity be-
tween the same (homotopic) regions of different hemi-
spheres.

We also have to notice that the applied approaches use
an indirect assumption that the studied signals can be
interpreted as time series of some nonlinear oscillators.
Such an assumption is common for most studies [Gerster
et al., 2020]. However, the question whether the sum-
mary activity of the neurons measured as local field po-
tentials may be interpreted in this way is still open. We
base our study on the results of the modeling works, spe-
cially designed for absence epilepsy [Medvedeva et al.,
2018; Medvedeva et al., 2020], which show that Granger
causality method applied to model series demonstrates
results similar to those applied to experimental ones. An-
other, earlier papers declare that the EEG can be consid-
ered as a liner noisy like signal [Pijn et al., 1991; Frank
et al., 1999], but this seems to be applicable to surface
encephalograms of healthy subjects only. We have to no-
tice that the role and usefulness of the noise in modeling
brain activity is still very unclear, with different aspects
considered in the literature, including intristic noise in
the equations for a signle neuron [Acebrén et al., 2004]
and common noise as an external input [Novichkova
et al., 2025].
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