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Abstract
The state estimating problems for nonlinear control

system with uncertainty in the initial data and parame-
ters are studied. It is assumed that the matrix presented
in differential equations of the control system is not ex-
actly known, but belongs to the given compact set in the
corresponding space. The right-hand sides of differen-
tial equations of a dynamical system may contain non-
linearities defined by functions quadratic in state coor-
dinates. The emphasis in this paper is on the problem
of estimating the states of such systems in the presence
of additional state constraints. We describe here new
approaches and algorithms allowing finding outer (ex-
ternal with respect to the operation of including sets)
ellipsoidal estimates of reachable sets of studied non-
linear control system. The approaches and results pre-
sented here may be used in many applied areas, when
the description of the model contains uncertainty and
nonlinearity.
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1 Introduction
The paper is a further contribution to the study

of estimation problems for uncertain systems in the
case when a probabilistic description of noise and er-
rors is not available, but only bounds on them are
known [Kurzhanski and Valyi, 1997; Kurzhanski and
Varaiya, 2014; Chernousko, 1994; Chernousko, 1996;
Schweppe, 1973; Bertsekas, 1995; Walter and Pron-
zato, 1997; Milanese, Norton, Piet-Lahanier, and Wal-

ter, 1996; Milanese and Vicino, 1991].
The research presents a number of useful tools for

the mathematical modeling of many natural systems in
physics, cybernetics, astrophysics, climatology, chem-
istry and biology, human systems in economics, psy-
chology and other applied areas when a stochastic na-
ture of the errors of modeling is questionable and only
related bounds of uncertain items are available.
The key issue in the set-membership estimation the-

ory is to find suitable techniques, which produce some
bounds on the set of unknown system states with-
out being too computationally demanding. Some of
such approaches may be found in [Baier, Gerdts, and
Xausa, 2013; Dontchev and Lempio, 1992; Kurzhan-
ski and Filippova, 1993; Kishida and Braatz, 2015;
Mazurenko, 2012; Filippova and Lisin, 2000; Matviy-
chuk, 2016; Polyak, Nazin, Durieu and Walter, 2004;
Sinyakov, 2015].
In this paper the modified state estimation approaches

which use the special nonlinear structure of a control
system and also take into account state constraints are
presented. We assume here that the system nonlinearity
is generated by the combination of two types of func-
tions in related differential equations, one of which is
bilinear and the other one is quadratic. The additional
state constraints appear in such mathematical models
in a very natural way when we consider concrete appli-
cations in cybernetics, physics, robotics, aeronautics,
medicine and other branches [Fradkov, 2007; Apreute-
sei, 2009; August and Koeppl, 2012; Ceccarelli, Di
Marco, Garulli, and Giannitrapani, 2004].
We find here the set-valued estimates of related reach-

able sets of such nonlinear uncertain control system un-
der an additional complication when we assume that
unknown states of the system should belong to a pre-
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scribed region in the state space (we consider here the
case when this region is defined by an ellipsoid in re-
lated space). The paper is devoted to further devel-
opments of results of [Filippova, 2017b], namely the
continuous-time version of the estimates of reachable
sets of the control system with uncertainty and non-
linearity is given here, a new theorem concerning this
estimation procedure is proven. Also some additional
numerical examples related to the considered problems
are included.
Therefore the results of the paper may be of interest

not only for specialists in the mathematical control the-
ory, but also may be useful for researchers studying
corresponding physical models and other applications
in the areas mentioned above.

2 Preliminaries and Problem Formulation
We need to define some auxiliary constructions and

results which will be used in the following.

2.1 Basic Notations and Definitions
We will start by introducing the following basic no-

tations. Let Rn be the n–dimensional Euclidean space
and x′y be the usual inner product of x, y ∈ Rn with
the prime as a transpose, with ∥x∥ = (x′x)1/2. De-
note comp Rn to be the variety of all compact subsets
A ⊂ Rn and conv Rn to be the variety of all com-
pact convex subsets A ⊂ Rn. Let us denote the vari-
ety of all closed convex subsets A ⊆ Rn by the sym-
bol clconv Rn. Let Rn×m stands for the set of all real
n×m-matrices, diag v denotes a diagonal matrix with
the elements of vector v on the main diagonal. Let
I ∈ Rn×n be the identity matrix, tr (A) be the trace
of n × n-matrix A (the sum of its diagonal elements).
We denote by B(a, r) = {x ∈ Rn : ∥x − a∥ ≤ r} the
ball in Rn with a center a ∈ Rn and a radius r > 0 and
by

E(a,Q) = {x ∈ Rn : (Q−1(x− a), (x− a)) ≤ 1}

the ellipsoid in Rn with a center a ∈ Rn and with a
symmetric positive definite n× n-matrix Q.
Consider the ordinary differential equation

ẋ = f(t, x, u(t)) (1)

with function f : T ×Rn ×Rm → Rn measurable in t
and continuous in other variables. Here x stands for the
state space vector, t stands for time (t ∈ T = [t0, t1])
and u(t) is a control function,

u(t) ∈ Q(t) (2)

where Q(t) is a set-valued map (Q : T → comp Rm)
measurable in t. The given data allows to consider a

set-valued function

F(t, x) =
∪

{ f(t, x, u) | u ∈ Q(t) } (3)

and further on, a differential inclusion [Aubin and
Frankowska, 1990; Filippov, 1985]

ẋ ∈ F(t, x) (4)

that reflects the variety of all models of type (1)-(2).
Let us assume that the initial condition to the system

(1) (or to the differential inclusion (4)) is unknown but
bounded

x(t0) = x0, x0 ∈ X0 ∈ comp Rn (5)

One of the principal points of interest of the theory of
control under uncertainty conditions [Kurzhanski and
Valyi, 1997; Kurzhanski and Varaiya, 2014] is to study
the set of all solutions x[t] = x(t, t0, x0) to (1)-(5) (re-
spectively, (4)-(5)) and furthermore the subset of those
trajectories x[t] = x(t, t0, x0) that satisfy both (4)-(5)
and a restriction on the state vector ( the “viability”
constraint [Aubin and Frankowska, 1990; Kurzhanski
and Filippova, 1993])

x[s] ∈ Y (s), s ∈ [t0, t] (6)

where Y (t) ∈ conv Rp for t ∈ [t0, t1].
The viability constraint (6) may be induced by state

constraints defined for a given plant model or by the
so-called measurement equation (details of the prob-
lem setting may be found in [Kurzhanski and Filippova,
1993])

y(t) = G(t)x+ w, (7)

where y is the measurement, G(t) is a matrix function,
w is an unknown but bounded “noise” with a given
bound,

w ∈ Q∗(t), Q∗(t) ∈ comp Rp,

(here Q∗(t) is a given set-valued function).
The problem consists in describing the set X[·] =
{x[·] = x(·, t0, x0)} of solutions to the system (4)-
(6) (the viable solution bundle or “viability bundle”).
The point of special interest is to describe the t – cross-
section X[t] of this set that is actually the attainability
domain of system (4)-(6) at the moment t. Unfortu-
nately, the exact determination of the reachable set X[t]
is a difficult problem and hence the problem of finding
its estimating sets of a canonical type (e.g., ellipsoids,
parallelotopes, polyhedrons etc.) is of interest.
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2.2 First Order Approximation
In this section we formulate necessary techniques and

results. We assume that the notions of continuity and
measurability of set-valued maps are taken in the sense
of [Filippov, 1985; Aubin and Frankowska, 1990].
Consider the differential inclusion (4), where x ∈ Rn,
F is a continuous set-valued map (F : [t0, t1]×Rn →
convRn) that satisfies the Lipschitz condition with con-
stant L > 0, namely

h(F(t, x),F(t, y)) ≤ L ∥ x− y ∥, ∀x, y ∈ Rn

where h(A,B) is the Hausdorff distance for A,B ⊆
Rn, i.e.

h(A,B) = max {h+(A,B), h−(A,B)},

with h+(A,B), h−(A,B) being the Hausdorff
semidistances between the sets A,B,

h+(A,B) = sup{d(x,B) | x ∈ A},

h−(A,B) = h+(B,A),

d(x,A) = inf {∥ x− y ∥ | y ∈ A}.

Assuming a set X0 ∈ comp Rn to be given, denote
x[t] = x(t, t0, x0) (t ∈ T = [t0, t1]) to be a solution
to (4) (an isolated trajectory) that starts at point x[t0] =
x0 ∈ X0.
We take here the Caratheodory–type trajectory x[·],

i.e. as an absolutely continuous function x[t] (t ∈ T )
that satisfies the inclusion

d

dt
x[t] = ẋ[t] ∈ F(t, x[t]) (8)

for almost every t ∈ T .
We require all the solutions {x[t] = x(t, t0, x0) | x0 ∈
X0} to be extendable up to the instant t1 that is possi-
ble under some additional assumptions [Filippova and
Berezina, 2008].
Let Y (t) be a continuous set-valued map (Y : T →

conv Rn), X0 ⊆ Y (t0).

Definition 1. [Kurzhanski and Filippova, 1993] A
trajectory x[t] = x(t, t0, x0) (x0 ∈ X0, t ∈ T ) of the
differential inclusion (8) will be called viable on [t0, τ ]
if

x[t] ∈ Y (t) for all t ∈ [t0, τ ]. (9)

We will assume that there exists at least one solution
x∗[t] = x∗(t, t0, x

∗
0) of (8) (together with a starting

point x∗[t0] = x∗
0 ∈ X0) that satisfies the condition (9)

with τ = t1.
Let X (·, t0, X0) be the set of all solutions to the inclu-

sion (8) that emerge from X0 ( the “trajectory bundle”).
Denote X [t] = X (t, t0, X0) its crossection at instant t.
The subset of X (·, t0, X0) that consists of all solu-

tions to (8) viable on [t0, τ ] will be further denoted as
X(·, τ, t0, X0) (the “viable trajectory bundle”) with its
s – cross-sections as X(s, τ, t0, X0), s ∈ [t0, τ ]. We
introduce symbol X[τ ] for these cross-sections at in-
stant τ , namely

X[τ ] = X(τ, t0, X0) = X(τ, τ, t0, X0).

The set-valued functions X [t] and X[t] (t ∈ T ) will
be referred to as the trajectory tube and viable trajec-
tory tube (or viability tube) respectively. They may be
considered as the set-valued analogies of the classical
isolated trajectories constructed now under uncertainty
conditions.
Let us consider the so-called funnel equation

lim
σ→+0

σ−1h( X [t+ σ],
∪

x∈X [t]

(x+

σF(t, x)) ) = 0, t0 ≤ t ≤ t1, X [t0] = X0.
(10)

Theorem 1. [Panasyuk, 1990; Kurzhanski and Filip-
pova, 1993] The multifunction X [t] = X (t, t0, X0) is
the unique set–valued solution to the evolution equa-
tion (10).

Now consider the analogy of the funnel equation
(10) but now for the viable trajectory tubes X[t] =
X(t, t0, X0):

lim
σ→+0

σ−1h
(
X[t+ σ],

∪
x∈X[t]

(x+ σF(t, x))

∩
Y (t+ σ)

)
= 0, t ∈ T, X[t0] = X0.

(11)

The following result is valid (under some additional
assumptions on F(t, x) and Y (t) [Kurzhanski and Fil-
ippova, 1993; Filippova, 2001]).

Theorem 2. [Kurzhanski and Filippova, 1993] The
set-valued function X[t] = X(t, t0, X0) is the unique
solution to the evolution equation (11).

2.3 Second Order Approximations
The above theorems produce the first order approxi-

mation of the solution tubes X[t], X [t]. The second
order approximations of reachable sets for differential
inclusions and for control systems under uncertainty
were studied in [Dontchev and Lempio, 1992; Baier,
Gerdts, and Xausa, 2013] (but without a viability con-
dition of type (9)).
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We shortly formulate here two results which yield the
second order approximation schemes (the set-valued
analogies of the Runge-Kutta schemes) for X [t]. This
section is included in the paper because it also com-
plements the previous results and can stimulate new
further researches of numerical methods (of second-
order accuracy) for estimating the reachable sets of
control systems under consideration. Moreover, some
of the results of this kind are used below in Section 2.4
where the examples illustrating the complicated geo-
metric structure of reachable sets are given.
Consider the evolution equation

lim
σ→+0

σ−2h
(
X [t+ σ], (

∪
x∈X[t]

(x + 0.5 σ×

×
∪

z∈F(t,X [t])

(z + F(t+ σ, x+ σz))))
)
= 0,

t0 ≤ t ≤ t1, X [t0] = X0.

(12)

Certainly the higher order approximations require
more assumptions on the data. We will assume in addi-
tion that the map F has strongly convex values F(t, x)
and that the support function

f(l, t, x) = max
u∈F(t,x)

l′u

and the (unique) support vector-function y(l, t, x) de-
fined as

l′y(l, t, x) = f(l, t, x)

are both continuously differentiable in l, t, x (for l ̸=
0).

Theorem 3. [Filippova, 2001] The multifunction
X [t] = X (t, t0, X0) is the unique set–valued solution
to the evolution equation (12).

Find now the equation that produces the second or-
der approximation for the viability tubes X[τ ] =
X(τ, t0, X0) of (8)-(9).
Define now an auxiliary notion.

Definition 2. Given two set-valued functions W1(·),

W2(·), a symbol
β∮
α

W1(s) ∗ W2(s)ds denotes the set-

valued convolution integral of W1(·) and W2(·) where

β∮
α

W1(s) ∗W2(s)ds =
∩

M(·)
{

β∫
α

(
(I−

M(s))W1(s) +M(s)W2(s)
)
ds }

(13)

where the intersection in (13) is taken over all continu-
ous n×n-matrix-functions M(s) defined on [α, β] and
the integral is understood as the Aumann integral.
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Figure 1. Trajectory tube X(·) (example 1).

Consider the equation

lim
σ→+0

σ−2h
(
X[t+ σ],

t+σ∮
t

(
∪

x∈X[t]

(x +

0.5 s×
∪

z∈F(t,X[t])

(z + F(t+ s, x+ sz)))) ∗

Y (s)ds
)
= 0, X[t0] = X0, t0 ≤ t ≤ t1.

(14)

Theorem 4. [Filippova, 2001] The viability tube
X[t] = X(t, t0, X0) is the unique set–valued solution
to the evolution equation (14).

Remark 1. Results of this section may be used as
background for computer simulations for finding the
reachable sets of uncertain dynamical systems with (or
without) state constraints. Unfortunately related com-
puter simulations require a large amount of memory
and a lot of time, in fact they are grid methods, see, for
example [Baier, Gerdts, and Xausa, 2013]. Therefore,
the question arises how to construct external (and if
possible, internal) estimating sets for reachable sets, the
calculation of which could turn out to be more rapid.

2.4 Numerical Simulations
Consider some examples which show that in the stud-

ied nonlinear case the reachable sets may lose their
convexity with increasing time t > t0 and may be of
very complicated structure.
Example 1. Consider the following control system

{
ẋ1 = a1x1 + x2

1 + x2
2 + u1,

ẋ2 = a2x2 + u2.
(15)

Here we take x0 ∈ X0 = B(0, 1), 0 ≤ t ≤ T = 0.6
and U = B(0, 0.1), unknown parameters a = (a1, a2)
satisfy the constraint a ∈ B(0, 1). The trajectory tube
X (t) is shown in Figure 1, here time moments are taken
as t = 0.01; 0.3; 0.45; 0.55; 0.6.
The projection of the above tube onto the plane of

state variables {x1, x2} is shown at Figure 2. We see



CYBERNETICS AND PHYSICS, VOL. 6, NO. 4 189

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

X( )t

1
x

2
x

Figure 2. Reachable sets X(t) (example 1).
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Figure 3. Trajectory tube X(·): the case of state constraints (ex-
ample 1).

here that the property of convexity of X(t) begins to be
violated with increasing time t.
The next Figure 3 shows the trajectory tube
X (t) of the system (15) for time instants t =
0.01; 0.3; 0.45; 0.55; 0.6 but with additional state con-
straint defined by a circle of radius 5 with center at zero.

Example 2. Consider the following control system

{
ẋ1 = a1x1 + x2

1 + x2
2 + u1,

ẋ2 = a2x2 + u2.
(16)

Here we take x0 ∈ X0 = B(0, 1), 0 ≤ t ≤ T = 0.85
and U = B(0, 0.1). Unknown parameters a = (a1, a2)
satisfy the ellipsoidal constraint

0.01 · a21 + a22 ≤ 1. (17)

The reachable sets X (t) are shown in Figure 4 for t =
0.45; 0.75; 0.82; 0.85.
The trajectory tube X (·) is shown in Figure 5.
Figure 6 shows the trajectory tube X (t) of the system
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Figure 4. Reachable sets X(t) (example 2).
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Figure 5. Trajectory tube X(·) (example 2).
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Figure 6. Trajectory tube X(·): the case of state constraints (ex-
ample 2).

(16) with additional state constraint defined by a circle
of radius 5 with center at zero.

It can be noted that the effect of nonconvexity of at-
tainability sets is expressed in the second example even
more strongly, possibly because of the special type
of ellipsoidal constraint (33) on unknown parameters
a = (a1, a2).
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3 Main Results
Here we consider the general case and we develop and

apply the modified state estimation approaches which
use the special structure of nonlinearity of studied con-
trol system and also take into account state constraints
are presented. The studies of systems of this class are
motivated, in particular, by the applied problems of
controlling the movement of objects under conditions
of uncertainty, including optimization of maneuvers of
an artificial Earth satellite with thrusters in a strong
gravitational field [Kuntsevich and Kurzhanski, 2010;
Kuntsevich and Volosov, 2015; Malyshev and Tychin-
skii, 2005].

3.1 Systems with State Constraints: Discrete-time
Case

Consider the following system

ẋ = A(t)x+ f(x)d+ u(t), t0 ≤ t ≤ t1,

x0 ∈ X0 = E(a0, Q0), u(t) ∈ U = E(â, Q̂),
(18)

where x, d, x0 ∈ Rn, ∥x∥ ≤ K (K > 0), f(x) is
the nonlinear function, which is quadratic in x, f(x) =
x′Bx, here we assume that the n × n-matrices B, Q0

and Q̂ are symmetric and positive definite.
The n× n-matrix function A(t) in (18) is of the form

A(t) = A0 +A1(t), (19)

where the n × n-matrix A0 is given and the measur-
able and n× n-matrix A1(t) is unknown but bounded,
A1(t) ∈ A1 (t ∈ [t0, t1]),

A(t) ∈ A = A0 +A1. (20)

Here

A1 =
{
A={aij}∈Rn×n : aij = 0 for i ̸= j,

and aii = ai, i = 1, . . . , n,

a = (a1, . . . , an), a′Da ≤ 1
}
,

(21)

where D ∈ Rn×n is a symmetric and positive definite
matrix.
We assume also that we have the additional state con-

straint on trajectories of the system (18), namely the
following inclusion should be satisfied

x[t] ∈ Y = E(ã, Q̃), t0 ≤ t ≤ t1, (22)

where the ellipsoid E(ã, Q̃) is given (with the center
ã ∈ Rn and the positive definite n× n–matrix Q̃).

Let the absolutely continuous function
x[t] = x

(
t;u(·), A(·), x0

)
be a solution to dy-

namical system (18)–(34) with initial state x0 ∈ X0,
with admissible control u(·) and with a matrix A(·).
The reachable set X[t] at time t (t0 < t ≤ t1) of the
system (18)–(34) (under viability constraint (34) of
type (9)) is defined as

X[t] ={x ∈ Rn : ∃x0∈X0, ∃u(·)∈U , ∃A(·)∈A,

x = x[t] = x
(
t;u(·), A(·), x0

)
, (23)

x[τ ] =x
(
τ ;u(·), A(·), x0

)
∈ Y, ∀τ ∈ [t0, t]}.

Using the analysis of the special bilinear-quadratic
type of nonlinearity of control systems with uncertain
initial data and with ellipsoidal state constraints we find
here the external ellipsoidal estimate E(a+(t), Q+(t))
(with respect to the inclusion of sets) of the reachable
set X[t] (t0 < t ≤ t1).
We will need further the following Minkowski (gauge)

functional of the star-shaped sets M ⊆ Rn (0 ∈ M )
[Demyanov and Rubinov, 1986; Filippova and Lisin,
2000],

hM (z) = inf{t > 0 : z ∈ tM, x ∈ Rn}.

The following result presents the external estimate of
reachable sets of system under viability (state) con-
straints. First we need to formulate the following aux-
iliary result.

Lemma 1. ([Filippova and Lisin, 2000; Matviychuk,
2016]) For X0 = E(0, Q0) and A1 defined in (21) the
Minkowski function of the set (I + σA1) ∗X0 has the
form

h(I+σA1)∗X0
(z) =

(
||Q−1/2

0 z||2−

2σ(
n∑

i,j=1

w2
i (D

−1/2)ij · w2
j )

1/2
)1/2

+ o(σ)||Q−1/2
0 z||,

w(z) = Q
−1/2
0 z, lim

σ→+0
σ−1o(σ) = 0.

(24)

Theorem 5. Let X0 = E(a0, k
2B−1), k ̸= 0. Then

for any matrix L ∈ Rn×n and for all σ > 0 the follow-
ing external estimate is true

X[t0 + σ] ⊆ E(a+L(σ), Q
+
L(σ)) + (25)

o(σ)B(0, 1), lim
σ→+0

σ−1o(σ) = 0,
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where

a+L(σ) = a0 + σ(â+ k2d+ a0Ba0 · d +

(A0 − L)a0 + Lã),

Q+
L(σ) = (p−1 + 1)Q1(σ) + (p+ 1)σ2Q̂∗,

Q1(σ) = diag{(p−1 + 1)σ2a20i +

(p+ 1)r2(σ)| i = 1, . . . , n},

r(σ) = max
z

||z|| · (h(I+σA)∗X0
(z))−1,

p is the unique positive root of the equation
n∑

i=1

1

p+ αi
=

n

p(p+ 1)
with αi ≥ 0 (i = 1, ..., n)

being the roots of the following equation |Q1(σ) −
ασ2Q̂∗| = 0, and E(â, Q̂∗) is the ellipsoid with mini-
mal volume such that

E(â, Q̂) + L · E(0, Q̃)+

(2d · a′0B +A0) · E(0, k2B−1) ⊆ E(â, Q̂∗).
(26)

Proof. We use here the idea of [Kurzhanski and Fil-
ippova, 1993] for elimination of state constraints in
the construction of reachable sets (see also related re-
sults in [Bettiol, Bressan, and Vinter, 2010; Gusev,
2016]). Consider the following differential inclusion
with n× n–matrix parameter L,

ż ∈ (A0 − L+A1)z + f(z) · d +

E(â, Q̂) + L · E(ã, Q̃), t0 ≤ t ≤ T,

z0 ∈ X0 = E(a0, Q0).

(27)

Denote by Z(t; t0, X0, L) (t ∈ [t0, t1]) the trajectory
tube to (27) for a fixed matrix parameter L. We have the
following estimate [Kurzhanski and Filippova, 1993]

X[t] ⊆
∩
L

Z(t; t0, X0, L), t0 ≤ t ≤ t1. (28)

Using results of Theorems 1-2 and also taking into ac-
count the approaches and results of [Filippova, 2012;
Filippova, 2016; Filippova and Lisin, 2000; Filip-
pova and Matviychuk, 2012; Filippova and Matviy-
chuk, 2015; Matviychuk, 2016; Filippova, 2017a; Fil-
ippova, 2017b] we can find the upper ellipsoidal esti-
mates for reachable sets Z[t] = Z(t; t0, X0, L) of the
nonlinear system (27) (we underline here that after the
above elimination this new system does not have state
constraints and therefore we may use some estimation
results mentioned in Section 2.2). Resulting estimate
(25) follows from (28) and from the above remark. �

The following algorithm is based on Theorem 5 and
may be used to produce the external ellipsoidal esti-
mates for the reachable sets of the system (18)-(34).
Fix a finite number of matrices Ls, s = 1, . . . , r (r is

an arbitrary integer, r > 0).

Algorithm 1. Subdivide the time segment [t0, t1]
into subsegments [τi, τi+1], where τi = t0 + iσ
(i = 1, . . . ,m), σ = (t1 − t0)/m.

1. For given X0 = E(a0, Q0) define the small-
est k0 > 0 such that E(a0, Q0) ⊆ E(a0, k

2
0B

−1)
(k20 is the maximal eigenvalue of the matrix
B1/2Q0B

1/2, [Filippova, 2012; Filippova and
Matviychuk, 2015]).

2. For X0 = E(a0, k
2
0B

−1) as an initial set define by
Theorem 5 the upper estimate E(a+Ls

(σ), Q+
Ls
(σ))

of the set X(t0 + σ), s = 1, . . . , r.
3. Take a compact and convex set X∗

0 such that∩
1≤s≤r

E(a+Ls
(σ), Q+

Ls
(σ)) ⊆ X∗

0 .

4. Consider the system on the next subsegment
[τ1, τ2] with the initial (at time instant τ1) set X∗

0

and with initial ellipsoid E(a1, k
2
1B

−1) found as
in step 1.

5. The next step repeats the previous iteration begin-
ning with new initial data.

At the end of the process we will get the external esti-
mate tube E(a+(t), Q+(t)) of the reachable sets X(t)
(t0 ≤ t ≤ t1) of the system (18)-(34).

3.2 Systems with State Constraints: Continuous-
time Case

The following result describes the dynamics of the ex-
ternal ellipsoidal estimates of the reachable set X(t) =
X(t; t0, X0) (t0 ≤ t ≤ T ).

Theorem 6. Let X0 = E(a0, k
2B−1), k ̸= 0. Then

for any matrix L ∈ Rn×n and for all t ∈ [t0, T ] the
following external estimate is true

X(t; t0, X0) ⊆ E(a+L(t), r
+
L (t)B

−1), (29)

where functions a+(t), r+(t) are the solutions of the
following system of ordinary differential equations

ȧ+L(t) = (A0 − L)a+L(t) + ((a+L(t))
′Ba+L(t)+

r+L (t))d+ â+ Lã, t0 ≤ t ≤ T,

ṙ+L (t) = max
∥l∥=1

{
l′
(
2r+L (t)B

1/2(A0 +

2d(a+(t))′B)B−1/2 +

q−1(r+L (t))B
1/2Q̂∗B1/2)

)
l
}
+ q(r+L (t))r

+
L (t),

q(r) = ((nr)−1Tr(BQ̂∗
L))

1/2,
(30)
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where the positive definite matrix Q̂∗
L is such that the

following inclusion holds

A1a0 + E(0, Q̂) + LE(0, q̃)+

k0D
1/2B1/2B(0, 1) + E(0, Q̃) ⊆ E(0, Q̂∗

L),
(31)

with initial state

a+L(t0) = a0, r+L (t0) = k2.

Proof. The above estimates are derived from Theo-
rem 5 with the necessary corrections done according
to new constraints on unknown parameters and func-
tions included in the system description and following
the general schemes of the paper [Filippova, 2010]. �

Remark 2. If the initial set X0 in (5) is an arbi-
trary ellipsoid of the form X0 = E(a0, Q0) we can
define the smallest k0 > 0 such that E(a0, Q0) ⊆
E(a0, k

2
0B

−1) (k20 is the maximal eigenvalue of the
matrix B1/2Q0B

1/2, [Filippova, 2012; Filippova and
Matviychuk, 2015]) and apply after that the Theo-
rem 6 to get the upper estimates of the reachable sets
X(t) = X(t; t0, X0).
Remark 3. It may be noted that the matrix Q̂∗

L (and
therefore the estimating ellipsoid E(0, Q̂∗

L)) in (31) de-
pends on a0, it is a new feature appeared here due to
more complicated bilinear structure of uncertainties in
the system dynamics.
Remark 4. The numerical scheme and related algo-

rithm for constructing upper estimates of reachable sets
of the system under consideration may be also formu-
lated similar to Algorithm 1. It seems that in the future
it will be possible to obtain more accurate upper esti-
mates of reachable sets X(t) = X(t; t0, X0) using the
results of Theorems 3-4.

3.3 Illustrative Example
Consider an example showing the main idea and the

estimation capacity of the Algorithm 1.
Example 3. Consider the following control system

{
ẋ1 = a1x1 + x2

1 + x2
2 + u1,

ẋ2 = a2x2 + u2.
(32)

Here we take x0 ∈ X0 = B(0, 1), 0 ≤ t ≤ T = 0.8
and U = B(0, 0.1). We assume that unknown parame-
ters {a1, a2} satisfy the constraint

a21 + a22 ≤ 1. (33)

We assume also that we have the additional constraint
on trajectories of the system (32), namely the following
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Figure 7. Reachable sets X(t) and its estimating ellipsoids
E(a+

Li
, r+Li

), i = 1, 2, 3 (example 3).

inclusion should be satisfied

x[t] ∈ Y = E(ã, Q̃), t0 ≤ t ≤ T, (34)

where we take the center ã = (0.5, 0) and the positive
definite 2× 2–matrix Q̃ = diag{0.64, 4}.
The reachable set X (t) of the system (32)-(34) for
t = 0.2 is shown in Figure 7 in blue color. Here the
estimating ellipsoids E(aLi , QLi), i = 1, 2, 3 found
according to results of Theorems 5-6 are indicated in
red, with

L1 =

(
0 1
0 0

)
, L2 =

(
0 1
0 1

)
, L3 =

(
0 0
0 0.01

)
,

and the state constraint defined by the ellipsoid Y =
E(ã, Q̃) is shown in Figure 7 in black color (as a dot-
ted line). We see here that each ellipsoid E(a+Li

, r+Li
)

produces the outer (external) estimate of reachable set
X (t) and crossing together they make the estimate of
X (t) more accurate.

4 Conclusions
The paper deals with the problems of state estimation

for a dynamical control system described by nonlinear
differential equations with unknown but bounded ini-
tial states. Nonlinearity in dynamics is described by a
combination of bilinear and quadratic functions of the
state of the system. Also the bilinear terms presented in
the system may be considered as uncertain disturbances
in matrix coefficients of the linear elements in the sys-
tem state velocities. The case of quadratic constraints
on bilinear uncertain parameters are studied here.
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We present in this paper the modified state estima-
tion approaches which use the special structure of the
nonlinear control system and we investigate the com-
plicated dynamical properties of reachable sets under
uncertainty.
The applications of the problems studied in this paper

are in guaranteed state estimation for nonlinear systems
with unknown but bounded errors and in nonlinear con-
trol theory including numerous applications in physics
and mechanics, in particular, in robotics and also in
other branches with uncertainty and nonlinearity in re-
lated dynamical models including problems in biology,
medicine and economics.
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