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Noeḿı DeCastro-Garćıa
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Abstract
In this paper we describe a procedure to visit all feed-

back classes of locally Brunovsky linear system over
fixed R = C(S1) the ring of real continuos functions
defined on the unit circle. Furthermore, we give the
exact number of such classes throughout partitions of
integers, binary strings and colored Ferrers diagrams.
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1 Introduction
LetR be a commutative ring with unit element1 6= 0.

A linear system overR is given by a linear rule (or
right hand side) on the formx+ = Ax + Bu where
x ∈ X are states,u ∈ U are inputs, andx+ is the time-
derivative or time-shift in the sequential case. Sets of
statesX and of inputsU areR-modules while maps
A andB areR-linear maps. In this way, we say that
a linear systemΣ (see figure 1) and other analogous
linear systemΣ′ are said to be Feedback Equivalent
if we can bring one of them into the another by a fi-
nite composition of the following Basic Feedback Ac-
tions: IsomorphismsQ : U → U ′ in the input mod-
ule, isomorphismsP : X → X ′ in the state module
and feedback actionsF : X → U which transforms
(A,B) to system(P (A + BF )P−1, PBQ). In gen-
eral, the theory of linear control systems over a com-
mutative ringR goes back to the models of [Morse,
1976] for delay models. See [Brewer, Bunce and Van-
Vleck, 1986], [Carriegos and Sánchez-Giralda, 2001]
and [Hermida-Alonso, López-Cabeceira and Trobajo,
2005] to do general reading about equivalent linear sys-
tems over commutative rings.
On the other hand, it is a known that partial reachabil-

ity linear map given by

ϕΣ
i =

(

B AB · · · Ai−1B
)

: U⊕i −→ X (1)

Σ :
U

ցB

X →A X

Figure 1. Σ(A,B) Linear System

is a feedback invariant, up to equivalence, associated to
Σ (see [Carriegos, 2003] and [Hermida-Alonso, Pérez
and Sánchez-Giralda, 1996]). So, we have a main set
of feedback invariants, up to up to isomorphism, asso-
ciated to systemΣ, it is, quotient modulesNΣ

i+1/N
Σ
i =

Im(B,AB, ..., AiB)/Im(B,AB, ..., Ai−1B). (2)

Furthermore, in the case of reachable linear systems
over a field, or in the more general framework of
projective-free rings, we known that if allR-modules
NΣ

i+1/N
Σ
i are free, then there is a complete set of in-

variants verifying

X = NΣ
1 ⊕NΣ

2 /NΣ
1 ⊕ · · · ⊕NΣ

s /NΣ
s−1. (3)

Thus, once we have fixed a projective-free ringR and
the dimensionsm = dimU andn = dimX , all feed-
back classes ofm-inputn-dimensional linear systems
are in one to one correspondence with the set of par-
titions of integern in decreasing sequences, equiva-
lently, all the Ferrers diagrams of integern (see [Knuth,
2004] to get a complete reading about partitions of in-
teger subject).
This paper is organized as it follows: In section

2, our study is focused over continuos real functions
R = C(K) defined in a topological spaceK (see
[Brunovsky, 1970]), in particular is given necessary
and sufficient conditions for classifying linear systems
overR = C(S1) by Ferrers diagrams (see [Carriegos
and Sánchez-Giralda, 2001] and [Ferrer, Garcı́a-Planas
and Puerta, 1997] to do a previous reading). In sec-
tion 3, we obtain the enumeration and the number of
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all feedback classes of reachable linear systems over
the freeR = C(S1)-module of rankn. In section 4, we
design a procedure to obtain and enumerate all such
classes. In section 5, we extend feedback classes study
of reachable linear systems overR = C(S1)-modules.

2 The Unit Circle and Colored Ferrer’s Diagrams
In this section, we strongly use next result (see [Car-

riegos and Sánchez-Giralda, 2001]):The classification
problem (in the case of projective invariants) is actually
equivalent to the problem of characterization of all pos-
sible decompositions of finitely generatedR-modules
U andX on the form

U = P0 ⊕ P1

X = P1 ⊕ P2 ⊕ · · · ⊕ Ps
(4)

whereP0 represents a solution forKer(B) andPi rep-
resents a solution forNΣ

i /NΣ
i−1. Thus, the only restric-

tion to solve the system of equations is thatPi+1 must
be a direct summand ofPi for all i.
In order to above theorem, to give the complete clas-

sification of locally Brunovsky systems is needed to
know exactly the monoid(Proj(R),⊕) of isomor-
phism classes of finitely generatedR-modules with
the direct sum as internal operation. The full descrip-
tion of the monoid(Proj(R),⊕) is a great task. Of
course, if finitely generated projective are free, then
(Proj(R),⊕) is isomorphic to(N∪{0},+), but in gen-
eral this is not the case. IfR = C(K) is the ring of
continuos functions defined on a compact topological
spaceK, then(Proj(R),⊕) ≡ (Vect(K),⊕) depend,
of course, on the topology ofK (see [Swan, 1962]).
Our paper is devoted to study ofK = S1 the real unit

circumference. In this case,(Proj(R = C(S1)),⊕) is
the commutative monoid generated by the symbolsR
(representing trivial vector bundles) andP (represent-
ing the Möbius Strip) modulo the relation

P ⊕ P = R⊕R = R2. (5)

Consequently, there is only two isomorphism classes
of rankr projectiveR-modules:Rr (the free one) and
Rr−1 ⊕ P . Thus, we may characterize the feedback
class of a locally Brunovsky linear system overR by
a colored Ferrer’s diagram: Because(Proj(R),⊕) is
the commutative monoid generated by the symbolsR
andP , then every building block is a rank1 projective
module, and there are two classes depicted by

for R andP respectively. Observe that we have the rule
(5), it is figure 2.
So, locally Brunovsky linear systems over the finitely

generated moduleX of rankn would be describe by
a colored Ferrer’s diagram with exactlyn building
blocks (white or grey) where the following four

=

Figure 2. Equation 5

Figure 3. Example 2.1

restrictions apply:

i) There is at most one grey block on each row (by
equation (5)).
ii ) Parity condition: ifX = Rn, then there are an even

number of grey blocks in the whole diagram.
iii ) Theith row is at most as long as the (i− 1)th row

(by decreasing ranks in the sequence (4)).
iv) If two rows have the same lengthr, then they are

equal (byRr is not a direct summand ofRr−1 ⊕P nor
the converse).

Example 2.1. In figure 3, we can see the feed-
back class of locally Brunovsky linear systems over
X = (R⊕R⊕ P )⊕ (R⊕ P )⊕ (R) freeR = C(S1)-
module of rankn = 6.

3 Number of Locally Brunovsky Linear Systems
Over the FreeR = C(S1)-module of Rankn

Let’s denote bypR(n) the number of non-isomorphic
decompositions ofRn, while p̃R(n) denotes the num-
ber of non-isomorphic decompositionsRn ∼= P1 ⊕
· · · ⊕Ps with Pi+1 direct summand ofPi. Note that, if
R is projectively trivial, theñpR(n) = pR(n) = p(n)
is the number of partitions of integern, but in general
p̃R(n) ≤ pR(n).
So, the number of feedback classes of locally

Brunovsky linear systems over the freeR = C(S1)-
module of rankn is p̃R(n). Thus, in order to give all
feedback classes equivalence we have to visit all par-
titions x of n and to determinate that colored Ferrer’s
diagrams verifying the above four conditions on par-
tition x. If we denote byp̃R(x) the number of such
diagrams, then

p̃R(n) =
∑

x

p̃R(x). (6)

It is known a procedure to obtain all partitions of a
given integern in inverse lexicographic order. Thus, let
x be a fixed partition ofn. First, conditioni) is direct
because inverse lexicographic order. Second, in order
to control conditioniv) we writex = xc1

1 , xc2
2 , . . . , xch

h

wheren = c1x1 + c2x2 + . . . + chxh andxi > xi+1

for all i. In this way, by conditioniv), we can define
theith-row-block, of the Ferrers diagram, as the block
of ci rows (each row of lengthxi) associated toxci

i
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The key is denote the colored Ferrer’s diagrams, asso-
ciated to a given sequence (4) with partitionx of n, as
a binary stringw = w1w2 . . . wh, wherewi = 0 if and
only if the ith-row-block associated toxci

i is white.
Finally, by conditioni), the ith-row-block associated

to xci
i affect conditionii ) if and only if ci is an odd ex-

ponent. Letcr be first odd exponent in the wayxr ≥ xj

for all xj such thatcj is an odd number, then following
computing sentences are equivalent to conditionii ):

1. (sum,w[i]c[i],i,1,h) = 0 mod(2)
2. if (c[i] odd number) then

(sum,w[i]c[i],i,1,h) = 0 mod(2)
3. if (i not r and c[i] odd number) then

(sum,w[i]c[i],i,1,h) = 1 mod(2)
4. if (i not r and c[i] odd number) then

(sum,w[i],i,1,h) = 1 mod(2)

In this way, in order to verify above four conditions,
observe thatci exponents are free for alli 6= r and
only cr control the parity conditionii ), i.e. parity is
controlled by the bitwr throughout the equality

wr +
∑

i6=r

wi = 0 mod2, (7)

wherewi bits are free for alli 6= r. So, we have next
result:

Theorem 3.1. LetR = C(S1) be the ring of real con-
tinuos functions defined on the unit circle. The number
of all feedback classes of locally Brunovsky linear sys-
tems over the freeR = C(S1)-module of rankn is given
by

p̃R(n) =
∑

x

p̃R(x) =
∑

x

2k,

where, if x is a partition denoted byx =
xc1
1 , xc2

2 , · · · , xch
h , thenk = h if not exists an odd ex-

ponentci in partition x, andk = h− 1 in other case.

Proof. It is known that the set of all feedback classes
of locally Brunovsky linear systems over the freeR =
C(S1)-module of rankn is the disjoint union, in par-
titions of n, of sets of all feedback classes of locally
Brunovsky linear systems over the freeR = C(S1)-
module of rankn throughout a given partitionx. Thus,
p̃R(n) =

∑

x p̃R(x).
On the other hand, in particular casex = xc1

1 with
c1 odd number we have only a colored Ferrers di-
agram (all building blocks are white) and it verifies
p̃R(x) = 2h−1 = 1. In other cases, by sentences 1,
2, 3, 4 and equation (7), it is clear that all feedback
classes of locally Brunovsky linear systems over the
freeR = C(S1)-module of rankn throughout a given
partitionx = xc1

1 , xc2
2 , · · · , xch

h are in one-to-one cor-
respondence with the set of all binary strings of length

x=61 w=0

p̃R(x)=2h−1=1

x=51,11 w=00 w=11

p̃R(x)=2h−1=2

x=41,21 w=00 w=11

p̃R(x)=2h−1=2

x=41,12 w=00 w=01

p̃R(x)=2h−1=2

x=32 w=0 w=1

p̃R(x)=2h=2

x=31,21,11 w=000 w=101

w=110 w=011

p̃R(x)=2h−1=4

x=31,13 w=00 w=11

p̃R(x)=2h−1=2

x=23 w=0

p̃R(x)=2h−1=1

x=22,12 w=00 w=01

w=10 w=11

p̃R(x)=2h=4

x=21,14 w=00 w=01

p̃R(x)=2h−1=2

x=16 w=0 w=1

p̃R(x)=2h=2

Figure 4. Feedback classes of Example 3.2

k, wherek = h if not exists an odd exponentci in par-
tition x, andk = h− 1 in other case. So,̃pR(x) = 2k.

Example 3.2. All p̃R(n) feedback classes of locally
Brunovsky linear systems over the freeR = C(S1)-
module of rankn = 6, are listed in figure 4. We con-
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clude that there exist̃pR(n) =
∑

x p̃R(x) = 24 feed-
back classes of locally Brunovsky linear systems over
the freeR = C(S1)-module of rankn = 6. Observe
that, inside each binary stringw of each partitionx
we have mark (if possible) parity control bitwr with
double underline.

4 Procedure
It is known an algorithm to obtain all partitions of a

given integern (see [Knuth, 2004]). We include it for
a complete study of our subject:

input(n){
m=1, h=1, x[1]=n;
for i=2 to n do x[i]=1;
output(x[1]);
while(x[1] not 1)do{

if(x[h]==2)then{
m=m+1, x[h]=1, x[m]=1, h=h-1

}else{
r=x[h]+1, t=m-h+1, x[h]=r,
while(t>=r)do{h=h+1, x[h]=r, t=t-r}
if(t==0)then{m=h
}else{m=h+1, if(t>1)then{ h=h+1, x[h]=t}}

}output(x[m])}}

Next, we give our procedure to give all col-
ored Ferrers diagramsD, associated to a partition
x = xc1

1 , xc2
2 , · · · , xch

h , verifying conditionsi), ii ), iii )
andiv).

input(x[1],x[2],· · · ,x[h],c[1],c[2],· · · ,c[h]){
r=0, k=h, boolean cont=true;
for i=1 to h do if(c[i]mod2==1∧cont)then{

r=i, k=h-1, cont=false}
for i=0 to pow(2,k)-1 do{

aux=integer[i].toBinaryString.ofLength[k]
for j=1 to h do

if(j<r)then w[j]=aux[j]
elseif(j>r) then w[j]=aux[j-1]

w[r]=sum(aux[j]c[j],j,1,h,j not r)mod2
output(w[1],w[2],· · · ,w[h])}}

input(w[1],w[2],· · · ,w[h]){
D = ∅;
for i=1 to h do{

if(w[i]=0)then {

add toD a building white block with c[i]
rows and x[i] columns
}else{
add toD a building grey block with c[i]
rows and x[i] columns}

}output(D)}

Example 4.1. Enumerate allp̃R(n) feedback classes
of locally Brunovsky linear systems over the freeR =
C(S1)-module of rankn = 50 associated to partition
x = 92, 63, 34, 21 of n. We haveh = 4 row-blocks in

0→000
w=0000

1→001
w=0101

2→010
w=0110

3→011
w=0011

4→100
w=1100

5→101
w=1001

6→110
w=1010

7→111
w=1111

Figure 5. Feedback classes of Example 4.1

each diagramD, r = 2 position of control bit andk =
h− 1 = 3 free bits, then there exist23 feedback classes
of locally Brunovsky linear systems over the freeR =
C(S1)-module of rankn = 380 associated to partition
x = 92, 63, 34, 21 of n:

0 1 2 3 4 5 6 7
92 w1 0 0 0 0 1 1 1 1
63 w2 0 1 1 0 1 0 0 1 pcb

34 w3 0 0 1 1 0 0 1 1
21 w4 0 1 0 1 0 1 0 1

pcb:parity control bit

with colored Ferrers diagrams of figure 5

5 Number of Locally Brunovsky Linear Systems
Over X = Rn−1 ⊕ P an R = C(S1)-module

Analogously to section 3, locally Brunovsky lin-
ear systems over the finitely generated moduleX =
Rn−1 ⊕ P would be describe by a colored Ferrer’s di-
agram with exactlyn building blocks (white or grey)
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x=61 w=0

p̃R(x)=2h−1=1

x=51,11 w=10 w=01

p̃R(x)=2h−1=2

x=41,21 w=10 w=11

p̃R(x)=2h−1=2

x=41,12 w=10 w=11

p̃R(x)=2h−1=2

x=31,21,11 w=100 w=001

w=010 w=111

p̃R(x)=2h−1=4

x=31,13 w=10 w=01

p̃R(x)=2h−1=2

x=23 w=1

p̃R(x)=2h−1=1

x=21,14 w=10 w=11

p̃R(x)=2h−1=2

Figure 6. Feedback classes of Example 3.2

where it changes parity condition:ii ) Parity condition:
if X = Rn−1 ⊕ P , then there are an odd number of
grey blocks in the whole diagram. So, in this case we
haveif (i not r and c[i] odd number) then (sum,w[i],i,1,h) = 0
mod(2). Observe that, in order to write a procedure we
have to replace the computing line

w[r]=sum(aux[j]c[j],j,1,h,j not r)+1 mod2.

Theorem 5.1. LetR = C(S1) be the ring of real con-
tinuos functions defined on the unit circle. The num-
ber p̃R(n) of all feedback classes of locally Brunovsky
linear systems overX = Rn−1 ⊕ P a R = C(S1)-
module is given by sum of̃pR(x) on x, where, ifx
is a partition denoted byx = xc1

1 , xc2
2 , · · · , xch

h , then
p̃R(x) = 0 if not exists an odd exponentci in partition
x, andp̃R(x) = 2h−1 in other case.

Example 5.2. All p̃R(n) feedback classes of locally
Brunovsky linear systems overX = R5 ⊕ P anR =
C(S1)-module, are listed in figure 6. Note that parti-
tionsx = 32, x = 22, 12 andx = 16 verify p̃R(x) = 0,
so this partitions do not math feedback classes.

6 Conclusion
In this paper, we design computing procedure for ob-

taining feedback equivalent classes of linear systems
under determined conditions. In this way, our blow-
up relation from integers partitions to feedback classes
lead to suppose that it is possible to design computing
procedures over other similar rings.
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