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Abstract We consider a stochastic Susceptible-Exposed-Infected-Recovered (SEIR) epi-
demiological model. Through the use of a normal form coordinate transform, we are able to
analytically derive the stochastic center manifold along with the associated, reduced set of
stochastic evolution equations. The transformation correctly projects both the dynamics and
the noise onto the center manifold. Therefore, the solution of this reduced stochastic dynam-
ical system yields excellent agreement, both in amplitude and phase, with the solution of the
original stochastic system for a temporal scale that is orders of magnitude longer than the
typical relaxation time. This new method allows for improved time series prediction of the
number of infectious cases when modeling the spread of disease in a population. Numerical
solutions of the fluctuations of the SEIR model are considered in the infinite population limit
using a Langevin equation approach, as well as in a finite population simulated as a Markov
process.
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1 Introduction

The interaction between deterministic and stochastic effects in population dynamics has
played, and continues to play, an important role in the modeling of infectious diseases. The
mechanistic modeling side of population dynamics is well-known and established [1; 4].
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These models typically are assumed to be useful for infinitely large, homogeneous popu-
lations, and arise from the mean field analysis of probabilistic models. On the other hand,
when one considers finite populations, random interactions give rise to internal noise ef-
fects, which may introduce new dynamics. Stochastic effects are quite prominent in finite
populations, which can range from ecological dynamics [17] to childhood epidemics in
cities [22; 26]. For homogeneous populations with seasonal forcing, noise also comes into
play in the prediction of large outbreaks [24; 5; 30]. Specifically, external random perturba-
tions change the probabilistic prediction of epidemic outbreaks as well as its control [28].

When geometric structure is applied to the population, the interactions are modeled
as a network [23; 19], and therefore, even mean field approximations may be quite high-
dimensional. Many types of static networks which support epidemics have been consid-
ered. Some examples include small world networks [31], hierarchical networks [33], and
transportation networks of patch models [11]. In addition, the fluctuation of epidemics on
adaptive networks,where the wiring between nodes changes in response to the node infor-
mation, has been examined [29]. In adaptive network models, even the mean field can be
high-dimensional, since nodes and links evolve in time and must be approximated as an
additional set of ordinary differential equations.

Another aspect of epidemic models which is often of interest involves the inclusion of
a time delay. The delay term makes the analysis significantly more complicated. However,
it is possible to approximate the delay by creating a cascade consisting of a large number
of compartments [18]. For example, one could simulate the delay associated with a disease
exposure time with several hundred “exposed” compartments.

These model examples are just a few of the types of very high-dimensional models that
are currently of interest. As a result of the high-dimensionality, there is much computation
involved, and the analysis is quite difficult. In particular, real-time computation is not cur-
rently possible. However, there are usually many time scales that are well-separated when
considering such high-dimensional problems. In the presence of well-separated time scales,
a model reduction method is needed to examine the dynamics on a lower-dimensional space.
It is known that deterministic model reduction methods may not work well in the stochastic
realm, which includes epidemic models [15]. The purpose of this article is to examine a
method of nonlinear, stochastic projection so that the deterministic and stochastic dynam-
ics interact correctly on the lower-dimensional manifold and predict correctly the dynamics
when compared to the full system. Because the noise affects the timing of outbreaks, it
is essential to produce a low-dimensional system which captures the correct timing of the
outbreaks as well as the amplitude and phase of any recurrent behavior.

We will demonstrate that our stochastic model reduction method properly captures the
initial disease outbreak and continues to accurately predict the outbreaks for time scales
which are orders of magnitude longer than the typical relaxation time. Furthermore, in prac-
tice, real disease data includes only the number of infectives. Our method allows us to predict
the number of exposed people based on the observed number of infected people.

For stochastic model reduction, there exist several potential methods for general prob-
lems. For a system with certain spectral requirements, the existence of a stochastic center
manifold was proven in [8]. Non-rigorous stochastic normal form analysis (which leads
to the stochastic center manifold) was performed in [12; 16; 20; 21]. Rigorous theoretical
analysis of normal form coordinate transformations for stochastic center manifold reduction
was developed in [2; 3]. Later, another method of stochastic normal form reduction was de-
veloped [25], in which any anticipatory convolutions (integrals into the future of the noise
processes) that appeared in the slow modes were removed. Since this latter analysis makes
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the construction of the stochastic normal form coordinate transform more transparent, we
use this method to derive the reduced stochastic center manifold equation.

Figure 1 shows a schematic demonstrating our approach to the problem. We consider
a high-dimensional system along with its corresponding low-dimensional system. In this
article, two types of low-dimensional system are discussed: a reduced system based on de-
terministic center manifold analysis and a reduced system based on a stochastic normal form
coordinate transform. Regardless of the type of low-dimensional system being considered, a
common noise is injected into both the high-dimensional and low-dimensional models, and
an analysis of the solutions found using the high and low-dimensional systems is performed.

High−Dimensional

Low−Dimensional

System

System

Noise

Common

Fig. 1 Schematic demonstrating the injection of a common noise into both the high-dimensional system and
its associated low-dimensional system.

In this article, as a first study of a high-dimensional system, we consider the Susceptible-
Exposed-Infected-Recovered (SEIR) epidemiological model with stochastic forcing. As pre-
viously mentioned, we could easily consider a SEIR-type model where the exposed class
was modeled using hundreds of compartments. Since the analysis is similar, we consider the
simpler standard SEIR model to demonstrate the power of our method. Section 2 provides a
complete description of this model. Section 3 describes how to transform the deterministic
SEIR system to a new system that satisfies the spectral requirements needed to apply the
center manifold theory. After the theory is used to find the evolution equations that describe
the dynamics on the center manifold, we show in Sec. 4 how the reduced model that is found
using the deterministic result incorrectly projects the noise onto the center manifold. Sec-
tion 5 demonstrates the use of a stochastic normal form coordinate transform to correctly
project the noise onto the stochastic center manifold, and the conclusions and discussion are
contained in Sec. 6.
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2 The SEIR model for epidemics

We begin by describing the stochastic version of the SEIR model found in [27]. We assume
that a given population may be divided into the following four classes which evolve in time:

1. Susceptible class, s(t), consists of those individuals who may contract the disease.
2. Exposed class, e(t), consists of those individuals who have been infected by the disease

but are not yet infectious.
3. Infectious class, i(t), consists of those individuals who are capable of transmitting the

disease to susceptible individuals.
4. Recovered class, r(t), consists of those individuals who are immune to the disease.

Furthermore, we assume that the total population size, denoted as N, is constant and can
be normalized to S(t)+E(t)+ I(t)+R(t) = 1, where S(t) = s(t)/N, E(t) = e(t)/N, I(t) =
i(t)/N, and R(t) = r(t)/N. Therefore, the population class variables S, E, I, and R represent
fractions of the total population. The governing equations for the stochastic SEIR model are
given as

Ṡ(t) = μ−β I(t)S(t)−μS(t)+σ1φ1(t), (1a)

Ė(t) = β I(t)S(t)− (α+μ)E(t)+σ2φ2(t), (1b)

İ(t) = αE(t)− (γ+μ)I(t)+σ3φ3(t), (1c)

Ṙ(t) = γI(t)−μR(t)+σ4φ4(t), (1d)

where σi is the standard deviation of the noise intensity Di = σ 2
i /2. Each of the noise terms,

φi, describes a stochastic, Gaussian white force that is characterized by the following corre-
lation functions:

〈φi(t)〉= 0, (2a)

〈φi(t)φ j(t ′)〉 = δ (t− t ′)δi j. (2b)

Additionally, μ represents a constant birth and death rate, β is the contact rate, α is the
rate of infection, so that 1/α is the mean latency period, and γ is the rate of recovery, so that
1/γ is the mean infectious period. Although the contact rate β could be given by a time-
dependent function (e.g. due to seasonal fluctuations), for simplicity, we assume β to be
constant. Throughout this article, we use the following parameter values: μ = 0.02(year)−1,
β = 1575.0(year)−1, α = 1/0.0279(year)−1, and γ = 1/0.01(year)−1. Disease parameters
correspond to typical measles values [27; 6]. Note that any other biologically meaningful
parameters may be used as long as the basic reproductive rate R0 > 1.

As a first approximation of stochastic effects, we have considered additive noise. This
type of noise may result from migration into and away from the population being consid-
ered [9]. Since it is difficult to estimate fluctuating migration rates [7], it is appropriate to
treat migration as an arbitrary external noise source. Also, fluctuations in the birth rate man-
ifest itself as additive noise. Furthermore, as we are not interested in extinction events in this
article, it is not necessary to use multiplicative noise. In general, for the problem considered
here, it is possible that a rare event in the tail of the noise distribution may cause one or more
of the S, E, and I components of the solution to become negative. In this article, we will al-
ways assume that the noise is sufficiently small so that a solution remains positive for a long
enough time to gather sufficient statistics. Even though it is difficult to accurately estimate
the appropriate noise level from real data, our choices of noise intensity lie within the huge
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confidence intervals computed in [7]. The case for multiplicative noise will be considered in
a separate paper.

Although S + E + I + R = 1 in the deterministic system, one should note that the dy-
namics of the stochastic SEIR system will not necessarily have all of the components sum
to unity. However, since the noise has zero mean, the total population will remain close
to unity on average. Therefore, we assume that the dynamics are sufficiently described by
Eqs. (1a)-(1c). It should be noted that even if E(t)+ I(t) = 0 for some t, the noise allows for
the reemergence of the epidemic.

3 Deterministic center manifold analysis

One way to reduce the dimension of a system of equations is through the use of determin-
istic center manifold theory. In general, a nonlinear vector field can be transformed so that
the linear part of the vector field has block diagonal form where the first matrix block has
eigenvalues with positive real part, the second matrix block has eigenvalues with negative
real part, and the third matrix block has eigenvalues with zero real part. These blocks are
associated respectively with the unstable eigenspace, the stable eigenspace, and the center
eigenspace. If we suppose that there are no eigenvalues with positive real part, then orbits
will rapidly decay to the center eigenspace.

Equations (1a)-(1c) can not be written in block diagonal form with one block containing
eigenvalues with negative real part and the other block containing eigenvalues with zero real
part. Therefore, we must transform Eqs. (1a)-(1c) to a new system of equations that has the
spectral structure that is needed to apply center manifold theory. The theory will allow us
to find an invariant center manifold passing through the fixed point to which we can restrict
the transformed system. Details regarding the transformation can be found in Sec. 3.1, and
the computation of the center manifold can be found in Sec. 3.2.

3.1 Transformation of the SEIR model

Our analysis begins by considering the governing equations for the stochastic SEIR model
given by Eqs. (1a)-(1c). We neglect the σiφi(t) terms in Eqs. (1a)-(1c) so that we are con-
sidering the deterministic SEIR system. This deterministic system has two fixed points. The
first is given as

(Se,Ee, Ie) = (1,0,0), (3)

and corresponds to a disease free, or extinct, equilibrium state. The second corresponds to
an endemic state and is given as

(S0,E0, I0) =
(

(γ +μ)(α+μ)
βα

,
μ

α+μ
− μ (γ+μ)

αβ
,

μα
(γ +μ) (α +μ)

− μ
β

)
. (4)

To ease the analysis, we define a new set of variables, S̄, Ē, and Ī, as S̄(t) = S(t)−S0,
Ē(t) = E(t)−E0, and Ī(t) = I(t)− I0. These new variables are substituted into Eqs. (1a)-
(1c).

Then, treating μ as a small parameter, we rescale time by letting t = μτ . We may then
introduce the following rescaled parameters: α = α0/μ and γ = γ0/μ , where α0 and γ0

are O(1). The inclusion of the parameter μ as a new state variable means that the terms
in our rescaled system which contain μ are now nonlinear terms. Furthermore, the system
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is augmented with the auxiliary equation dμ
dτ = 0. The addition of this auxiliary equation

contributes an extra simple zero eigenvalue to the system and adds one new center direction
that has trivial dynamics. The shifted and rescaled, augmented system of equations is given
as follows:

dS̄
dτ

= −βμ ĪS̄− (α0 +μ2)(γ0 +μ2)
α0

Ī− α0μ3β
(α0 +μ2)(γ0 +μ2)

S̄, (5a)

dĒ
dτ

= βμ ĪS̄+
(α0 +μ2)(γ0 +μ2)

α0
Ī +

μ2[α0βμ− (α0 +μ2)(γ0 +μ2)]
(α0 +μ2)(γ0 +μ2)

S̄−

(α0 +μ2)Ē, (5b)

dĪ
dτ

= α0Ē − (γ0 +μ2)Ī, (5c)

dμ
dτ

= 0, (5d)

where the endemic fixed point is now located at the origin.

The Jacobian of Eqs. (5a)-(5d) is computed to zeroth-order in μ and is evaluated at the
origin. Ignoring the μ components, the Jacobian has only two linearly independent eigen-
vectors. Therefore, the Jacobian is not diagonalizable. However, it is possible to transform
Eqs. (5a)-(5c) to a block diagonal form with the eigenvalue structure that is needed to use
center manifold theory. We use a transformation matrix, P, consisting of the two linearly
independent eigenvectors of the Jacobian along with a third vector chosen to be linearly in-
dependent. There are many choices for this third vector; our choice is predicated on keeping
the vector as simple as possible. This transformation matrix can be found in Appendix A.
Using the fact that (S̄, Ē, Ī)T = P · (U,V,W )T , then the transformation matrix leads to the
following definition of new variables, U , V , and W :

U =
−γ0

α0 + γ0
Ē, (6a)

V = S̄+
γ0

α0 + γ0
Ē, (6b)

W = Ī + Ē. (6c)
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The application of the transformation matrix to Eqs. (5a)-(5c) leads to the following
transformed evolution equations:

dU
dτ

=−α0U +
μ2 (γ0V −α0U)

α0 + γ0
−
(
γ0 +μ2

)(
α0 +μ2

)
[(α0 + γ0)U + γ0W ]

α0 (α0 + γ0)
−

μβ
α0 + γ0

(
γ0W +(α0 + γ0)U +

μ2α0γ0

(γ0 +μ2) (α0 +μ2)

)
(U +V ) , (7a)

dV
dτ

=α0U − μ2 (γ0V −α0U)
α0 + γ0

−
(
γ0 +μ2

)(
α0 +μ2

)
[(α0 + γ0)U + γ0W ]

γ0 (α0 + γ0)
−

μβα0

γ0 (α0 + γ0)

(
γ0W +(α0 + γ0)U +

μ2α0γ0

(γ0 +μ2)(α0 +μ2)

)
(U +V ) , (7b)

dW
dτ

=−α0U −(γ0 +μ2)(U +W )+

(
γ0 +μ2

)(
α0 +μ2

)
[(α0 + γ0)U + γ0W ]

α0γ0
−

μ2V +
μβ
γ0

(
γ0W +(α0 + γ0)U +

μ2α0γ0

(γ0 +μ2)(α0 +μ2)

)
(U +V ) , (7c)

dμ
dτ

=0. (7d)

3.2 Center manifold equation

The Jacobian of Eqs. (7a)-(7d) to zeroth-order in μ and evaluated at the origin is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(α0 + γ0) 0 − γ2
0

(α0+γ0) 0

0 0 − α0γ0
(α0+γ0) 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

which shows that Eqs. (7a)-(7d) may be rewritten in the form

dx
dτ

= Ax+ f(x,y,μ), (9)

dy
dτ

= By+g(x,y,μ), (10)

dμ
dτ

= 0, (11)

where x = (U), y = (V,W ), A is a constant matrix with eigenvalues that have negative real
parts, B is a constant matrix with eigenvalues that have zero real parts, and f and g are
nonlinear functions in x, y and μ . In particular,

A =
[−(α0 + γ0)

]
, B =

⎡
⎣ 0 − α0γ0

(α0+γ0)

0 0

⎤
⎦ . (12)
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Therefore, the system will rapidly collapse onto a lower-dimensional manifold given by
center manifold theory [10]. Furthermore, since x is associated with A and y is associated
with B, we know that the center manifold is given by

U = h(V,W,μ), (13)

where h is an unknown function.
Substitution of Eq. (13) into Eq. (7a) leads to the following center manifold condition:

∂h(V,W,μ)
∂V

dV
dτ

+
∂h(V,W,μ)

∂W
dW
dτ

= −α0h(V,W,μ)+
μ2 [γ0V −α0h(V,W,μ)]

α0 + γ0
−(

γ0 +μ2
)(
α0 +μ2

)
[(α0 + γ0)h(V,W,μ)+ γ0W ]

α0 (α0 + γ0)
−

μβ
α0 + γ0

(
γ0W +(α0 + γ0)h(V,W,μ)+

μ2α0γ0

(γ0 +μ2) (α0 +μ2)

)
(h(V,W,μ)+V) . (14)

In general, it is not possible to solve the center manifold condition for the unknown function,
h(V,W,μ). Therefore, we perform the following Taylor series expansion of h(V,W,μ) in V ,
W , and μ:

h(V,W,μ) =h0 +h2V +h3W +hμ μ +h22V
2 +h23VW +h33W

2+

hμ2μV +hμ3μW +hμμ μ2 + . . . , (15)

where h0, h2, h3, hμ , . . . are unknown coefficients that are found by substituting the Taylor
series expansion into the center manifold condition and equating terms of the same order.
By carrying out this procedure using a second-order Taylor series expansion of h, we have
found the center manifold equation to be

U = − γ2
0

(α0 + γ0)2W +O(ε3), (16)

where ε = |(V,W,μ)| so that ε provides a count of the number of V , W , and μ factors in
any one term. Substitution of Eq. (16) into Eqs. (7b) and (7c) leads to the following reduced
system of evolution equations which describe the dynamics on the center manifold:

dV
dτ

=− μ2γ0
2α0W

(α0 + γ0)3 − μ4α0W

(α0 + γ0)2 − γ0μ2V
α0 + γ0

−
(
γ0 +μ2

)
α0W

α0 + γ0
−

βα0
2μ

(α0 + γ0)2

(
W +

μ2 (α0 + γ0)
(γ0 +μ2)(α0 +μ2)

)(
V − γ0

2W

(α0 + γ0)2

)
, (17a)

dW
dτ

=
μ2γ0

2W

(α0 + γ0)
2 +

μ4W
α0 + γ0

−μ2V+

βμα0

α0 + γ0

(
W +

μ2 (α0 + γ0)
(γ0 +μ2)(α0 +μ2)

)(
V − γ0

2W

(α0 + γ0)
2

)
. (17b)
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4 Incorrect projection of the noise onto the stochastic center manifold

4.1 Transformation of the stochastic SEIR model

We now return to the stochastic SEIR system given by Eqs. (1a)-(1c). The shift of the fixed
point to the origin will not have any effect on the noise terms, so that the stochastic version
of the shifted equations will be

˙̄S(t) = −β ĪS̄− (α+μ)(γ +μ)
α

Ī− αμβ
(α+μ)(γ+μ)

S̄+σ1φ1(t), (18a)

˙̄E(t) = β ĪS̄+
(α+μ)(γ+μ)

α
Ī +

μ[αβ − (α +μ)(γ+μ)]
(α+μ)(γ +μ)

S̄− (α +μ)Ē +σ2φ2(t),

(18b)

˙̄I(t) = α Ē− (γ +μ)Ī +σ3φ3(t). (18c)

As Eqs. (18a)-(18c) are transformed using Eqs. (6a)-(6c), the α = α0/μ scaling, the
γ = γ0/μ scaling, and the t = μτ time scaling, the noise also is scaled so that the stochastic,
transformed equations are given by

dU
dτ

=−α0U +
μ2 (γ0V −α0U)

α0 + γ0
−
(
γ0 +μ2

)(
α0 +μ2

)
[(α0 + γ0)U + γ0W ]

α0 (α0 + γ0)
−

μβ
α0 + γ0

(
γ0W +(α0 + γ0)U +

μ2α0γ0

(γ0 +μ2)(α0 +μ2)

)
(U +V )+σ4φ4, (19a)

dV
dτ

=α0U − μ2 (γ0V −α0U)
α0 + γ0

−
(
γ0 +μ2

)(
α0 +μ2

)
[(α0 + γ0)U + γ0W ]

γ0 (α0 + γ0)
−

μβα0

γ0 (α0 + γ0)

(
γ0W +(α0 + γ0)U +

μ2α0γ0

(γ0 +μ2) (α0 +μ2)

)
(U +V )+σ5φ5, (19b)

dW
dτ

=−α0U −(γ0 +μ2)(U +W )+

(
γ0 +μ2

)(
α0 +μ2

)
[(α0 + γ0)U + γ0W ]

α0γ0
−

μ2V +
μβ
γ0

(
γ0W +(α0 + γ0)U +

μ2α0γ0

(γ0 +μ2) (α0 +μ2)

)
(U +V )+σ6φ6, (19c)

where

σ4φ4 =− μγ0

α0 + γ0
σ2φ2, (20a)

σ5φ5 =μσ1φ1 +
μγ0

α0 + γ0
σ2φ2, (20b)

σ6φ6 =μσ2φ2 +μσ3φ3. (20c)

The stochastic terms φ4, φ5, and φ6 in Eqs. (19a)-(19c) are still additive, Gaussian noise
processes. However, Eqs. (20a)-(20c) show how the transformation has acted on the original
stochastic terms φ1, φ2, and φ3 to create new noise processes which have a variance different
from that of the original noise processes. Also note that we have suppressed the argument
of φ4, φ5, and φ6 in Eqs. (19a)-(19c). The time scaling means that these noise terms should
be evaluated at μτ .

The system of equations given by Eqs. (19a)-(20c) are an exact transformation of the
system of equations given by Eqs. (1a)-(1c). We numerically integrate the original, stochas-
tic system of the SEIR model [Eqs. (1a)-(1c)] along with the transformed, stochastic system
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Fig. 2 (Color online) Time series of the fraction of the population that is infected with a disease, I, computed
using the original, stochastic system of equations of the SEIR model [Eqs. (1a)-(1c)] (red, solid line), and
computed using the transformed, stochastic system of equations of the SEIR model [Eqs. (19a)-(19c)] (blue,
dashed line). The standard deviation of the noise intensity used in the simulation is σi = 0.0005, i = 1, . . . ,6.

[Eqs. (19a)-(19c)] using a stochastic fourth-order Runge-Kutta scheme with a constant time
step size. The original system is solved for S, E, and I, while the transformed system is
solved for U , V , and W . In the latter case, once the values of U , V , and W are known, we
compute the values of S̄, Ē, and Ī using the transformation given by Eqs. (6a)-(6c). We shift
S̄, Ē, and Ī respectively by S0, E0, and I0 to find the values of S, E, and I.

Figure 2 compares the time series of the fraction of the population that is infected with
a disease, I, computed using the original, stochastic system of equations of the SEIR model
with the time series of I computed using the transformed, stochastic system of equations of
the SEIR model.

Although the two time series shown in Fig. 2 generally agree very well, there is some
discrepancy. This discrepancy is due to the fact that the noise processes σ4φ4, σ5φ5, and
σ6φ6 of the transformed system are new, independent noise processes with different variance
than the σ1φ1, σ2φ2, and σ3φ3 noise processes found in the original system. If we carefully
take the noise realization from the original system, transform this noise using Eqs. (20a)-
(20c), and use this realization to solve the transformed system, then the two solutions would
be identical.
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4.2 Reduction of the stochastic SEIR model

It is tempting to consider the reduced stochastic model found by substitution of Eq. (16)
into Eqs. (19b) and (19c), so that one has the following stochastic evolution equations (that
hopefully describe the dynamics on the stochastic center manifold):

dV
dτ

=− μ2γ0
2α0W

(α0 + γ0)
3 − μ4α0W

(α0 + γ0)
2 − γ0μ2V

α0 + γ0
−
(
γ0 +μ2

)
Wα0

α0 + γ0
−

βα0
2μ

(α0 + γ0)
2

(
W +

μ2 (α0 + γ0)
(γ0 +μ2) (α0 +μ2)

)(
V − γ0

2W

(α0 + γ0)
2

)
+σ5φ5, (21a)

dW
dτ

=
μ2γ0

2W

(α0 + γ0)2 +
μ4W
α0 + γ0

−μ2V+

βμα0

α0 + γ0

(
W +

μ2 (α0 + γ0)
(γ0 +μ2)(α0 +μ2)

)(
V − γ0

2W

(α0 + γ0)2

)
+σ6φ6. (21b)

One should note that Eqs. (21a) and (21b) also can be found by naı̈vely adding the
stochastic terms to the reduced system of evolution equations for the deterministic problem
[Eqs. (17a) and (17b)]. This type of stochastic center manifold reduction has been done for
the case of discrete noise [6]. Additionally, in many other fields (e.g. oceanography, solid
mechanics, fluid mechanics), researchers have performed stochastic model reduction using
a Karhunen-Loève expansion (principal component analysis, proper orthogonal decomposi-
tion) [13; 32]. However, this linear projection does not properly capture the nonlinear effects.
Furthermore, one must subjectively choose the number of modes needed for the expansion.
Therefore, even though the solution to the reduced model found using this technique may
have the correct statistics, individual solution realizations will not agree with the original,
complete solution.

We will show that Eqs. (21a) and (21b) do not contain the correct projection of the noise
onto the center manifold. Therefore, when solving the reduced system, one does not obtain
the correct solution. Such errors in stochastic epidemic modeling impact the prediction of
disease outbreak when modeling the spread of a disease in a population.

Using the same numerical scheme previously described, we numerically integrate the
complete, stochastic system of transformed equations of the SEIR model [Eqs. (19a)-(19c)]
along with the reduced system of equations that is based on the deterministic center manifold
with a replacement of the noise terms [Eqs. (21a) and (21b)]. The complete system is solved
for U , V , and W , while the reduced system is solved for V and W . In the latter case, U is
computed using the center manifold equation given by Eq. (16). Once the values of U , V ,
and W are known, we compute the values of S̄, Ē, and Ī using the transformation given by
Eqs. (6a)-(6c). We shift S̄, Ē, and Ī respectively by S0, E0, and I0 to find the values of S, E,
and I.

Figures 3(a)-(b) compares the time series of the fraction of the population that is infected
with a disease, I, computed using the complete, stochastic system of transformed equations
of the SEIR model [Eqs. (19a)-(19c)] with the time series of I computed using the reduced
system of equations of the SEIR model that is based on the deterministic center manifold
with a replacement of the noise terms [Eqs. (21a) and (21b)]. Figure 3(a) shows the initial
transients, while Fig. 3(b) shows the time series after the transients have decayed. One can
see that solution computed using the reduced system quickly becomes out of phase with
the solution of the complete system. Use of this reduced system would lead to an incorrect
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Fig. 3 (Color online) Time series of the fraction of the population that is infected with a disease, I, computed
using the complete, stochastic system of transformed equations of the SEIR model [Eqs. (19a)-(19c)] (red,
solid line), and computed using the reduced system of equations of the SEIR model that is based on the
deterministic center manifold with a replacement of the noise terms [Eqs. (21a) and (21b)] (blue, dashed
line). The standard deviation of the noise intensity used in the simulation is σi = 0.0005, i = 4,5,6. The time
series is shown for (a) t = 0 to t = 40, and for (b) t = 40 to t = 100.

prediction of the initial disease outbreak. Additionally, the predicted amplitude of the initial
outbreak would be incorrect. The poor agreement, both in phase and amplitude, between the
two solutions continues for long periods of time as seen in Fig. 3(b). We also have computed
the cross-correlation of the two time series shown in Fig. 3(a)-(b) to be approximately 0.34.
Since the cross-correlation measures the similarity between the two time series, this low
value quantitatively suggests poor agreement between the two solutions.
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Using the same systems of transformed equations, we compute 140 years worth of time
series for 500 realizations. Ignoring the first 40 years of transient solution, the data is used to
create a histogram representing the probability density, pSI of the S and I values. Figure 4(a)
shows the histogram associated with the complete, stochastic system of transformed equa-
tions, while Fig. 4(b) shows the histogram associated with the reduced system of equations
with a replacement of the noise terms. The color-bar values in Figs. 4(a)-(b) have been nor-
malized by 10−3.

Fig. 4 (Color online) Histogram of probability density, pSI of the S and I values found using (a) the complete,
stochastic system of transformed equations for the SEIR model [Eqs. (19a)-(19c)], and (b) the reduced system
of equations of the SEIR model that is based on the deterministic center manifold with a replacement of the
noise terms [Eqs. (21a) and (21b)]. The histograms are created using 100 years worth of time series (starting
with year 40) for 500 realizations, and the color-bar values have been normalized by 10−3.

One can see by comparing Fig. 4(a) with Fig. 4(b) that the two probability distributions
qualitatively look the same. It also is possible to compare the two distributions using a
quantitative measure. The Kullback-Leibler divergence, or relative entropy, measures the
difference between the two probability distributions as

dKL =∑
i, j

Pi, j

∣∣∣∣log

(
Pi, j

Qi, j

)∣∣∣∣ , (22)

where Pi, j refers to the (i, j)th component of the probability density found using the com-
plete, stochastic system of transformed equations [Fig. 4(a)], and Qi, j refers to the (i, j)th
component of the probability density found using the reduced system of equations [Fig. 4(b)].
In our numerical computation of the relative entropy, we have added 10−10 to each Pi j and
Qi j. This eliminates the possibility of having a Qi j = 0 in the denominator of Eq. (22) and
does not have much of an effect on the relative entropy.

If the two histograms were identical, then the relative entropy given by Eq. (22) would be
dKL = 0. The two histograms shown in Figs. 4(a)-(b) have a relative entropy of dKL = 0.0391,
which means that the two histograms, while not identical, are quantitatively very similar.
However, one cannot rely entirely on the histograms alone to say that the solutions of the
complete system and the reduced system agree. As we have seen in Figs. 3(a)-(b), the two
solutions have differing amplitudes and are out of phase with one another. It is important to
note that these features are not picked up by the histograms of Fig. 4.
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5 Correct projection of the noise onto the stochastic center manifold

To project the noise correctly onto the center manifold, we will derive a normal form coor-
dinate transform for the complete, stochastic system of transformed equations of the SEIR
model given by Eqs. (19a)-(19c). The particular method we use to construct the normal form
coordinate transform not only reduces the dimension of the dynamics, but also separates all
of the fast processes from all of the slow processes [25]. This technique has been modified
and applied to the large fluctuations of multiscale problems [15].

Many publications [16; 12; 20; 21] discuss the simplification of a stochastic dynamical
system using a stochastic normal form transformation. In some of this work [12; 21], antic-
ipative noise processes appeared in the normal form transformations, but these integrals of
the noise process into the future were not dealt with rigorously.

Later, the rigorous, theoretical analysis needed to support normal form coordinate trans-
forms was developed [3; 2]. The technical problem of the anticipative noise integrals also
was dealt with rigorously in this work. Even later, another stochastic normal form transfor-
mation was developed [25]. This new method allows for the “[removal of] anticipation ...
from the slow modes with the result that no anticipation is required after the fast transients
decay”(Ref. [25], pp. 13). The removal of anticipation leads to a simplification of the normal
form. Nonetheless, this simpler normal form retains its accuracy with the original stochastic
system [25].

We shall use the method of [25] to simplify our stochastic dynamical system to one that
emulates the long-term dynamics of the original system. The method involves five princi-
ples, which we recapitulate here for completeness:

1. Avoid unbounded, secular terms in both the transformation and the evolution equations
to ensure a uniform asymptotic approximation.

2. Decouple all of the slow processes from the fast processes to ensure a valid long-term
model.

3. Insist that the stochastic slow manifold is precisely the transformed fast processes coor-
dinate being equal to zero.

4. To simplify matters, eliminate as many as possible of the terms in the evolution equa-
tions.

5. Try to remove all fast processes from the slow processes by avoiding as much as possible
the fast time memory integrals in the evolution equations.

In practice, the original stochastic system of equations (which satisfies the necessary
spectral requirements) in (U,V,W )T coordinates is transformed to a new (Y,X1,X2)T coor-
dinate system using a near-identity stochastic coordinate transform as follows:

U =Y +ξ (Y,X1,X2,τ) , (23a)

V =X1 +η (Y,X1,X2,τ) , (23b)

W =X2 +ρ (Y,X1,X2,τ) , (23c)

where the specific form of ξ (Y,X1,X2,τ), η (Y,X1,X2,τ), and ρ (Y,X1,X2,τ) is chosen to
simplify the original system according to the five principles listed previously, and is found
using an iterative procedure.

Several iterations lead to coordinate transforms for U , V , and W along with evolution
equations describing the Y -dynamics, X1-dynamics, and X2-dynamics in the new coordinate
system. The Y -dynamics have exponential decay to the Y = 0 slow manifold. Substitution
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of Y = 0 yields the following coordinate transforms:

U =σ4G (φ4)+
γ0

2 (σ6G (φ6)−X2)
(α0 + γ0)2 +μ

[
γ0β [σ5X2G (φ5)−X1X2 +σ6X1G (φ6)]

(α0 + γ0)2 −

σ4α0βγ0G
2 (φ4) [(α0 + γ0)X1 + γ0X2]

(α0 + γ0) (γ0 +μ2)(α0 +μ2)

]
+μ2

[
γ0 [X1α0 −2X2 +2σ6G (φ6)]

α0 (α0 + γ0)
−

σ4G
2 (φ4)

(γ0 +μ2) (α0 +μ2)

(
2γ0

3 +α0
3

α0 + γ0
+

α0
2γ0

2 (α0 + γ0)
(γ0 +μ2) (α0 +μ2)

)
− σ5γ0G (φ5)

(α0 + γ0)2

]
+

μ3

[
β [−X1 +σ5G (φ5)]

(α0 + γ0)
2 − σ4βG 2 (φ4)

(γ0 +μ2)(α0 +μ2)

(
α0γ0

α0 + γ0
+ γ0X2 +X1 (α0 + γ0)

)
+

β (σ6X1G (φ6)+σ5X2G (φ5)−X1X2α0)
α0 (α0 + γ0)

]
+O(μ4), (24a)

V =X1 +μ

[
σ4α0βX1G (φ4)

α0 + γ0
+
σ4α0βX2G (φ4)

(α0 + γ0)2

]
+μ2

[
σ4G (φ4)

(
α2

0 +α0γ0 + γ2
0

)
γ0 (α0 + γ0)2

]
+

μ3

[
σ4α0βG (φ4)
γ0 (α0 + γ0)

2 +
σ4βX2G (φ4)
γ0 (α0 + γ0)

+
σ4βX1G (φ4)

γ2
0

]
+O(μ4), (24b)

W =X2 +μ
[
−σ4βX1G (φ4)

γ0
− σ4βX2G (φ4)

(α0 + γ0)

]
+μ2

[
σ4G (φ4)

(
α2

0 +α0γ0 + γ2
0

)
α0γ0 (α0 + γ0)

]
+

μ3
[
− σ4βG (φ4)
γ0 (α0 + γ0)

− σ4 (α0 + γ0)βX1G (φ4)
α0γ2

0

− σ4βX2G (φ4)
α0γ0

]
+O(μ4), (24c)

where

G (φ) = e−ℵτ ∗φ =
τ∫

−∞
exp [−ℵ · (τ− s)]φ(s)ds, ℵ=

α0γ0 (α0 + γ0)
(α0 +μ2) (γ0 +μ2)

, (25)

and
G 2(φ) = e−ℵτ ∗ e−ℵτ ∗φ . (26)

All of the stochastic terms in Eqs. (24a)-(24c) consist of integrals of the noise process
into the past (convolutions), as given by Eqs. (25) and (26). Since these memory integrals
are fast-time processes, and since we are interested in long-term slow processes, we ignore
the memory integrals found in Eqs. (24a)-(24c) so that

U =− γ2
0 X2

(α0 + γ0)
2 − μβX1

(α0 + γ0)

(
μ2

(α0 + γ0)
+

γ0X2

(α0 + γ0)
+μ2X2

)
+

μ2γ0

(α0 + γ0)

(
X1 − 2X2

α0

)
, (27a)

V = X1, (27b)

W = X2. (27c)
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Fig. 5 (Color online) Time series of the fraction of the population that is infected with a disease, I, computed
using the complete, stochastic system of transformed equations of the SEIR model [Eqs. (19a)-(19c)] (red,
solid line), and computed using the reduced system of equations of the SEIR model that is found using the
stochastic normal form coordinate transform [Eqs. (28a), (28b), (32a), and (32b)] (blue, dashed line). The
standard deviation of the noise intensity used in the simulation is σi = 0.0005, i = 4,5,6. The time series is
shown for (a) t = 0 to t = 40, and for (b) t = 40 to t = 100.

Note that Eq. (27a) is the deterministic center manifold equation, and at first-order, matches
the center manifold equation that was found previously [Eq. (16)].

Substitution of Y = 0 and ignoring all multiplicative noise terms and memory integrals
(so that we consider only first-order noise terms) leads to the following reduced system of
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evolution equations on the center manifold:

dX1

dτ
= F(X1(τ),X2(τ)), (28a)

dX2

dτ
= G(X1(τ),X2(τ)). (28b)

The specific form of F and G in Eqs. (28a) and (28b) are complicated, and are therefore
presented in Appendix B.

We numerically integrate the complete, stochastic system of transformed equations of
the SEIR model [Eqs. (19a)-(19c)] along with the reduced system of equations that is found
using the stochastic normal form coordinate transform [Eqs. (28a), (28b), (32a), and (32b)].
The complete system is solved for U , V , and W , while the reduced system is solved for
X1 = V and X2 = W . In the latter case, U is computed using the center manifold equation
given by Eq. (27a). As before, once the values of U , V , and W are known, we compute the
values of S̄, Ē , and Ī using the transformation given by Eqs. (6a)-(6c). We shift S̄, Ē, and Ī
respectively by S0, E0, and I0 to find the values of S, E, and I.

Figures 5(a)-(b) compares the time series of the fraction of the population that is in-
fected with a disease, I, computed using the complete, stochastic system of transformed
equations of the SEIR model [Eqs. (19a)-(19c)] with the time series of I computed using the
reduced system of equations of the SEIR model that is found using the stochastic normal
form coordinate transform [Eqs. (28a), (28b), (32a), and (32b)]. Figure 5(a) shows the ini-
tial transients, while Fig. 5(b) shows the time series after the transients have decayed. One
can see that there is excellent agreement between the two solutions. The initial outbreak is
successfully captured by the reduced system. Furthermore, Fig. 5(b) shows that the reduced
system accurately predicts recurrent outbreaks for a time scale that is orders of magnitude
longer than the relaxation time. The cross-correlation of the two time series shown in Fig. 3
is approximately 0.98, which quantitatively suggests there is excellent agreement between
the two solutions.

Using the same systems of transformed equations, we compute 140 years worth of time
series for 500 realizations. As before, we ignore the first 40 years worth of transient solution,
and the data is used to create a histogram representing the probability density, pSI of the
S and I values. Figure 6(a) shows the histogram associated with the complete, stochastic
system of transformed equations, while Fig. 6(b) shows the histogram associated with the
reduced system of equations found using the normal form coordinate transform. The color-
bar values in Figs. 6(a)-(b) have been normalized by 10−3.

As we saw with Figs. 4(a)-(b), the probability distribution shown in Fig. 6(a) looks
qualitatively the same as the probability distribution shown in Fig. 6(b). Using the Kullback-
Leibler divergence given by Eq. (22), we have found that the two histograms shown in
Figs. 6(a)-(b) have a relative entropy of dKL = 0.0953. Since this value is close to zero, the
two histograms are quantitatively very similar.

6 Conclusions and Discussion

We have considered the dynamics of an SEIR epidemiological model with stochastic forcing
in the form of additive, Gaussian noise. We have presented two methods of model reduc-
tion, whereby the goal is to project both the noise and the dynamics onto the stochastic cen-
ter manifold. The first method uses the deterministic center manifold found by neglecting
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Fig. 6 (Color online) Histogram of probability density, pSI of the S and I values found using (a) the complete,
stochastic system of transformed equations for the SEIR model with mortality [Eqs. (19a)-(19c)], and (b) the
reduced system of equations of the SEIR model with mortality that is found using the stochastic normal form
coordinate transform [Eqs. (28a), (28b), (32a), and (32b)]. The histograms are created using 100 years worth
of time series (starting with year 40) for 500 realizations, and the color-bar values have been normalized by
10−3.

the stochastic terms in the governing equations, while the second method uses a stochastic
normal form coordinate transform.

Since the original system of governing equations does not have the necessary spectral
structure to employ either deterministic or stochastic center manifold theory, the system
of equations has been transformed using an appropriate linear transformation coupled with
appropriate parameter scaling. At this stage, the first method of model reduction can be
performed by computing the deterministic center manifold equation. Substitution of this
equation into the complete, stochastic system of transformed equations leads to a reduced
system of stochastic evolution equations.

The solutions of the complete, stochastic system of transformed equations as well as the
reduced system of equations were computed numerically. We have shown that the individual
time series do not qualitatively nor quantitatively agree, because the noise has not been cor-
rectly projected onto the stochastic center manifold. However, by comparing histograms of
the probability density, pSI of the S and I values, we saw that there was very good agreement.
This is caused by the fact that although the two solutions are out of phase with one another,
their range of amplitude values are similar. The phase difference is not represented in the
two histograms. This is a real drawback when trying to predict the timing of outbreaks, and
leads to potential problems when considering epidemic control, such as the enhancement of
disease extinction through random vaccine control [14].

To accurately project the noise onto the manifold, we derived a stochastic normal form
coordinate transform for the complete, stochastic system of transformed equations. The co-
ordinate transform is found using an iterative method, and contains integrals of the noise
processes into the past. Since these integrals are fast time processes, and since we are in-
terested in long-time slow behavior, they can be ignored. The numerical solution to this
reduced system was compared with the solution to the original system, and we showed
that there was excellent agreement, both qualitatively and quantitatively. As with the first
method, the histograms of the probability density, pSI of the S and I values agree very well.

It should be noted that the use of these two reduction methods is not constrained to
problems in epidemiology, but rather may be used for many types of physical problems.
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Fig. 7 Cross-correlation between time series found using the original, stochastic system of transformed
equations and the reduced system of equations based on the deterministic center manifold (“circle” markers),
and cross-correlation between time series found using the original, stochastic system of transformed equations
and the reduced system of equations based on the stochastic normal form coordinate transform (“square”
markers). The cross-correlation is computed using time series from t = 800 to t = 1000.

For some generic systems, such as the singularly perturbed, damped Duffing oscillator, ei-
ther reduction method can be used since the terms in the normal form coordinate transform
which lead to the average stochastic center manifold being different from the deterministic
center manifold occur at very high order [15]. In other words, the average stochastic center
manifold and deterministic center manifold are virtually identical. For the SEIR model con-
sidered in this article, there are terms at low order in the normal form transform which cause
a significant difference between the average stochastic center manifold and the determinis-
tic manifold. Therefore, as we have demonstrated, when working with the SEIR model, one
must use the normal form coordinate transform method to correctly project the noise onto
the center manifold.

In addition to computing the cross-correlation between the solution of the original sys-
tem and the solutions of the two reduced systems for σi = 0.0005, we have computed the
cross-correlation for the case of zero noise as well as for noise intensities ranging from
σ = 5.0×10−10 to σ = 5.0×10−5. These cross-correlations were computed using time se-
ries from t = 800 to t = 1000. For the deterministic case (zero noise), the cross-correlation
between the time series which were computed using the original system and the reduced
system based on the deterministic center manifold is 1.0, since the agreement is perfect.
The cross-correlation between the original system and the reduced system found using the
stochastic normal form is also 1.0. Figure 7 shows the cross-correlation between the original
system and the two reduced systems for various values of σ .
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One can see in Fig. 7 that the solutions found using the reduced system based on the
deterministic center manifold compare poorly with the original system at very low noise
values. Furthermore, as the noise increases, the agreement between the two solutions gets
worse. On the other hand, Fig. 7 shows that the solutions computed using the reduced system
found using the normal form coordinate transform compare very well with the solutions to
the original system across a wide range of small noise intensities.

It is worth pointing out that one might wish to replace the stochastic terms by determin-
istic, period functions of small amplitude. As an example, one could consider the following
sinusoidal functions:

σ1φ1 = cos (10πμt)/8000, (29a)

σ2φ2 = sin(4πμt)/8000, (29b)

σ3φ3 = cos (10πμt)/8000, (29c)

where σ4φ4, σ5φ5, and σ6φ6 are given by Eqs. (20a)-(20c). Using Eqs. (29a)-(29c) or some
other similar deterministic drive, the solution computed using the reduced system based on
the deterministic center manifold analysis will agree perfectly with the solution computed
using the complete system of equations. On the other hand, since the reduced system based
on the normal form analysis was derived specifically for white noise, the transient solution
found using this reduced system will not agree with the solution found using the complete
system. It is possible to find a normal form coordinate transform for periodic forcing, but
the normal form will be different than the one derived in this article for white noise.

Figures 8(a)-(b) compares the time series of the fraction of the population that is in-
fected with a disease, I, computed using the complete system of transformed equations of
the SEIR model [Eqs. (19a)-(19c)] with the time series of I computed using the reduced
system of equations of the SEIR model that is found using the stochastic normal form co-
ordinate transform [Eqs. (28a), (28b), (32a), and (32b)], but where the stochastic terms of
both systems have been replaced by the deterministic terms given by Eqs. (29a)-(29c). Fig-
ure 8(a) shows the initial transients, while Fig. 8(b) shows a piece of the time series after
the transients have decayed. One can see in Figs. 8(a)-(b) that although the two solutions
eventually become relatively synchronized with one another, there is poor agreement, both
in phase and amplitude, throughout the transient.

The solutions to the original system and both reduced systems are continuous solutions
based on an infinite population assumption, and are found using Langevin equations having
Gaussian noise. It is interesting to examine the effects of general noise by using a Markov
simulation to compare solutions of the original and reduced systems.

The complete system in the original variables (see page 3) will evolve in time t in the
following way:

transition rate
(s−1,e+1, i) β si/N
(s,e−1, i+1) αe
(s,e, i−1) γ i
(s+1,e, i) μN
(s−1,e, i) μs
(s,e−1, i) μe
(s,e, i−1) μi

. (30)

Using a total population size of N = 10 million, we have performed a Markov simulation of
the system. After completing the Markov simulation, we divided s, e, and i by N to find S,
E, and I. Figure 9(a) shows a time series, after the transients have decayed, of the fraction
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Fig. 8 (Color online) Time series of the fraction of the population that is infected with a disease, I, computed
using the complete system of transformed equations of the SEIR model [Eqs. (19a)-(19c)] (red, solid line),
and computed using the reduced system of equations of the SEIR model that is found using the normal form
coordinate transform [Eqs. (28a), (28b), (32a), and (32b)] (blue, dashed line). The stochastic terms in both
systems have been replaced by the deterministic terms given by Eqs. (29a)-(29b). The time series is shown
from (a) t = 0 to t = 25, and from (b) t = 65 to t = 70.

of the population that is infected with a disease, I. The results reflect both the mean and
the frequency of the deterministic system. Performing the simulation for 500 realizations
allows us to create a histogram representing the probability density, pSI of the S and I values.
This histogram is shown in Fig. 9(b), and one can see that the probability density reflects
the amplitude, which varies with the population size, of S and I. The color-bar values in
Fig. 9(b) have been normalized by 10−4
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Fig. 9 (a) Time series of the fraction of the population that is infected with a disease, I, computed using a
Markov simulation of the complete, original equations of the SEIR model [Eq. (30)], and (b) (color online)
a histogram of probability density, pSI of the S and I values found using a Markov simulation of Eq. (30).
The histogram is created using 100 years worth of data (starting with year 40) for 500 realizations, and the
color-bar values have been normalized by 10−4.

The complete system in the transformed variables has the stable endemic equilibrium at
the origin. To bound the dynamics to the first octant, we use the fact that s ≥ 0, e ≥ 0, and
i ≥ 0 to derive the appropriate inequalities for the transformed, discrete variables u, v, and
w. These inequalities can be found in Appendix C as Eq. (33). These inequalities enable us
to define new discrete variables Y1, Y2, and Y3, given by Eqs. (34a)-(34c) in Appendix C.

In the Yi variables, we define evolution relationships similar to those found in Eq. (30).
The complete transformed system will evolve in time τ according to the transition and rates
given by Eq. (35) in Appendix C.

40 60 80 100 120 140
0

2

4

x 10
−4

t

I

(a)

S

I

 

 

0.058 0.062 0.066 0.07

1

2

3

x 10
−4

p S
I

0

5

10

(b)

Fig. 10 (a) Time series of the fraction of the population that is infected with a disease, I, computed using
a Markov simulation of the complete, transformed equations of the SEIR model [Eq. (35)], and (b) (color
online) a histogram of probability density, pSI of the S and I values found using a Markov simulation of
Eq. (35). The histogram is created using 100 years worth of data (starting with year 40) for 500 realizations,
and the color-bar values have been normalized by 10−4.

After performing a Markov simulation of Eq. (35) with a population size of N = 10 mil-
lion, we can compare the dynamics of the transformed system to the dynamics of the original
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system by transforming the Yi variables in the time series back to the original s, e, and i vari-
ables. Dividing by N yields S, E, and I. Figure 10(a) shows a time series, after the transients
have decayed, of the fraction of the population that is infected with a disease, I. The mean
and the frequency agree with those found from the Markov simulation of the original sys-
tem. We have performed the simulation for 500 realizations, and a histogram representing
the probability density, pSI is shown in Fig. 10(b). The color-bar values in Fig. 10(b) have
been normalized by 10−4. One can see in Fig. 10(a) that the relative fluctuations of the I
component has nearly doubled. While the fluctuation size was 0.152 for the original system,
it is 0.310 for the transformed system. Additionally, the two histograms shown in Figs. 9(b)
and 10(b) have a relative entropy of dKL = 0.9519, which means they are not in agreement.
Because the simulation of the stochastic dynamics in the complete system of transformed
variables do not qualitatively (or quantitatively) resemble the original stochastic system, we
cannot expect that the reduced system will agree with either the original or the transformed
systems. Therefore, much care should be exercised when extending the model reduction re-
sults (which show outstanding agreement) derived for a specific type of noise in the limit of
infinite population to finite populations with a more general type of noise.

In summary, we have presented a new method of stochastic model reduction that al-
lows for dramatic improvement in time series prediction. The reduced model captures both
the amplitude and phase accurately for a temporal scale that is many orders of magnitude
longer than the typical relaxation time. Since sufficient statistics of disease data are limited
due to short time series collection, the results presented here provide a potential method to
properly model real, stochastic disease data in the time domain. Such long-term accuracy
of the reduced model will allow for the application of effective control of a disease where
phase differences between outbreak times and vaccine controls are important. Additionally,
since our method is general, it may be applied to very high-dimensional epidemic models,
such as those involving adaptive networks. From a dynamical systems viewpoint, the reduc-
tion method has the potential to accurately capture new, emergent dynamics as we increase
the size of the random fluctuations. This could be a means to identify new noise-induced
phenomena in generic stochastic systems.
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A Transformation Matrix

P =

⎡
⎢⎢⎢⎢⎣

1 1 0

− α0+γ0
γ0

0 0

α0+γ0
γ0

0 1

⎤
⎥⎥⎥⎥⎦ . (31)
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B Reduced, stochastic SEIR model: Correct projection of the noise

The specific form of F and G in Eqs. (28a) and (28b) are given as follows:

F =−
[
α2

0 γ
3
0 X2 +

μβα2
0

(α0 + γ0)
γ2
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− γ2
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+
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α0βγ0
(
α3

0 −α2
0 γ0 −3α0γ2

0 −3γ3
0

)
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2 X1X2

)]
/
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(
α0 +μ2)(γ0 +μ2)]+

σ5φ5 − μ2(α2
0 +α0γ0 + γ2
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(α0 + γ0)3

(
σ4α0φ4

γ0
+

σ6γ0φ6
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)
−

μ3α0β
(α0 + γ0)3

(
σ4α0φ4

γ0
+

σ6γ0φ6

(α0 + γ0)

)
, (32a)

G =

[
μ

(
α3

0βγ
2
0

(α0 + γ0)
X1X2 − α2

0βγ
4
0

(α0 + γ0)2 X2
2
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C Markov simulation for transformed SEIR model

The complete system in the transformed variables has the stable endemic equilibrium at the origin. To bound
the dynamics to the first octant, we transform the new variables by using the original properties of s ≥ 0,
e ≥ 0, and i ≥ 0, so that

u ≤ μ2Nγ0

α0 (α0 + γ0)
, − Nγ0

(
βμ3 +α0

2 + γ0α0
)

α0βμ (α0 + γ0)
≤ v, − Nμ2 (α0 + γ0)

γ0α0
≤ w. (33)

Therefore, we define the following new variables:

Y1 = −u+
Nμ2γ0

α0 (α0 + γ0)
, (34a)

Y2 = v+
Nγ0

(
βμ3 +α0

2 + γ0α0
)

α0βμ (α0 + γ0)
, (34b)

Y3 = w+
Nμ2 (α0 + γ0)

γ0α0
. (34c)
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In these variables, we define evolution relationships similar to Eq. (30). The complete transformed system
will evolve in τ the following way:

transition rate

(Y1 +1,Y2,Y3)
βμ
N

(
γ0

α0+γ0
Y2Y3 +Y 2

1

)
(Y1 −1,Y2,Y3) (α0 +μ2)Y1 + βμ

N

(
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α0+γ0
Y1Y3 +Y1Y2

)
(Y1,Y2 +1,Y3) μ2N + βμ

N

(
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γ0

Y1Y2

)
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N
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(α0+γ0)Y2Y3 + α0
γ0

Y1
2
)

(Y1,Y2,Y3 +1) (α0 + γ0)Y1 + βμ
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(
Y2Y3 + (α0+γ0)

γ0
Y1

2
)

(Y1,Y2,Y3 −1) (γ0 +μ2)Y3 + βμ
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. (35)
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