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Abstract
Vibration reduction is an important issue in the design of modern machines. One of the present trends to reduce the vibration is toward the use of viscoelastic materials. In this paper, we propose a weak singular integro-differential equation to mathematically model the vibration of one dimensional viscoelastic structures. This equation contains nonlinear and hereditary terms to catch realistic vibratory behavior. Then, we solve the mathematical model by the numerical method which employs an integration method with the elimination of the weak singularity. Through the numerical experiments of a rotor blade problem, it is shown that the vibrations under constant and harmonic forces are properly reduced by the viscosity parameter of the hereditary term in linear and nonlinear cases. 
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1. Introduction
In this work analyzed vibration of one-dimensional viscoelastic rod structure under harmonic load. The structure is considered hereditary deformable with one degree of freedom rod structure. It is assumed that the connection point of the structure is excited by harmonic motion, given 
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is amplitude and 
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is the period(frequency) of the harmonic excitation.
In order to analyze vibratory behavior of the model is assumed the model as rod structure with concentrated mass on tip. In this simple model, the vertical displacement and mass of rotation are not considered. Then nonlinear excitation of the hereditary deformable cantilever rod system with one degree of freedom is described by the following integral differential equation (Badalov, F.B., 1987; Rabotnov, Yu. N., 1977; Badalov, F.B., 1980; Badalov, F. B. and Usmonov, B. Sh., 2004; Badalov, F. B., et al., 1987):
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where m is mass of the rod, k is reduced rigidity of rod and R* is Volterra integral operator (Badalov, F.B., 1980; Goroshko, O.A. and Pushko, N.P.,  1997; Badalov, F. B., et al.,  1987; Rzanitsyn, A. R. , 1968). The Volterra integral operator is
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is the kernel of the hereditary with weak singular features of Abelian type (Badalov, F.B., 1987; Goroshko, O.A. and Pushko, N.P.,  1997).

Abelian type is considered as
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where 
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 is singularity coefficient, 
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 is relaxation coefficient and 
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 is viscosity parameter.
2. Numerical solution techniques
2.1 Without hereditary form. 

At the first stage, we start with a simpler problem without the hereditary form. Equation (1) for the elastic rod structure is written as:
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where R*=0 and 
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. The solution of equation (3) can be obtained by power series and integration methods. 
Finally, the solutions are obtained by 
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where 
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. Recurrent formula’s (4) allows to find the numerical values of 
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2.2 With hereditary form
In this section, we describe the methodologies for solving the nonlinear integral differential equation of second order (1) with the hereditary term:
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with initial conditions. 
We will obtain the solution of the equation (5) by an integration method, which is supplemented by the elimination of the weak singularity features of IDE based on Badalov’s work (Badalov, F.B., 1987). By integrating equation (5) with initial conditions (2a) twice, the equation of motion becomes
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(6)
Equation (6) is called weak singular integro-differential equation because unknown functions U(s) is inside of the integral, and R(-s) has the weak singularity of Abelian type.
By introducing terms 
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, equation (6) can be described in the form
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This equation is integrated by the trapezoid method and becomes 
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where 
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. 

Once the weak singularity is eliminated, the solution of the equation of motion can be explicitly obtained by
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3. Numerical validation and results

In this section, we will discuss numerical validation of the rotor blade problem by the integration method. The solution of the excitation of the body of the rotor blade is described by equation (6). This equation is used for numerical calculation of a hereditary deformation. 
There are investigated the dynamic response under constant and harmonic forces. First is investigated the vibratory behavior under a constant force (see Figure 1). Initial conditions and parameters for the second test are 
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The initial conditions are given by zero as differently as the first test because we try to make the vibration occurred only by the given force. In Figure 1(a) illustrated the perfect-elastic case and the Figure 1(b) illustrates viscoelasticity case when the viscosity parameter
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Figure 1. Dynamic response under constant force (a)  = 0 and (b)  =0.1

First, we have tested for 
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. As same as observed in first experiment, the nonlinear parameter 
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 affects the amplitude and excitation period. For the forced vibration case, the vibratory behaviors show a little softening effect. It is different comparing to the results of the first experiments. When viscosity parameter is non-zero, Figure 1 (b) clearly demonstrates that the vibration hereditary deformable structure under a constant force follows up to the creep curve. It cannot be exposed by the perfect elastic material. This creep response is occurred by that the hereditary deformations under the constant load are accumulated. This creep response, which is an unique response of viscoelasticity, is introduced also by Badalov. This vibration of the both cases of Figure 1(b) also show damped motion. 

In the second experiment, we consider how the viscosity and nonlinearity parameters influence to the body under harmonic forced motion. The initial condition for this test is:
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When the period w is given by 1, the structure is expected to resonant because the given value is equal to the resonant frequency of the body. 
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Figure 2. The dynamic response under harmonic forced vibration (a)  = 0 and (b)  =0.2
As above, we test perfect-elastic and viscoelastic materials of the body. Figure 2(a) illustrates the response under the harmonic excitation with 
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 for the perfect elastic material and in Figure 2(b) we have the response curve under the harmonic excitation with
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 for the viscoelastic material. The nonlinearity parameter very clearly demonstrated in the perfect-elastic material of the body (Figure 2(a)), but it has minor influence for viscoelastic case (Figure 2(b)). The motion is damped significantly fast in case of the viscoelasticity. Such consideration of the hereditary property of the material will make motion be damped. The experiment shows that the influence of viscosity parameter 
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 is much higher than nonlinearity parameter. Resonance phenomenon is happened as we expected in this case, as in Figure 2a and we observe dramatically increase of the amplitude. When considering the viscoelastic material, the growth of the amplitude is very small comparing to Figure 2a. 
4. Conclusion

Proposed weak singular integro-differential equation provides a good solution of the nonlinear hereditary (viscoelastic) body under forced vibration. Through numerical implementation, we explored the creep response for viscoelastic materials under a constant forced excitation. We also investigated resonance behavior of structure under forced harmonic excitation and compared the vibratory behaviors of perfect elastic and viscoelastic material with the nonlinearity feature. As demonstrated in the rotor blade model, the mathematical equations with hereditary and nonlinear terms successfully analyze realistic vibratory characteristics of one dimensional viscoelastic problems. 

Future research may be applied for more complex cases of a body, like airfoil or wing section. 
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