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Abstract:
In this paper we address the problem of stabilization and local positioning of a four-
rotor rotorcraft using computer vision. Our approach combines the measurements
from an Inertial Measurement Unit and a vision system composed of a simple
camera used to estimate the orientation and position of the rotorcraft. The vision
system provides the position and yaw angle while the IMU gives the pitch and
roll angles at a higher rate. We present two different techniques to obtain the
position from the image. We present real-time experiments of the stabilization of
a four-rotor rotorcraft.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAV’s) have recently at-
tracted a lot of attention from the automatic control
community because of their wide range of civil as well as
military applications. Autonomous flying machines can
be used in the surveillance of hostile sites or polluted
environments (nuclear power stations, chemical plants,
etc.,) or simply for monitoring forests, highway traffic.
All these applications require UAV’s capable of hovering
and navigation which heavily depend on the applied
control strategy and the on-board set of sensors which
should provide information on the behavior of the UAV
at an affordable price.

We have chosen the aerodynamical configuration of a
four-rotor rotorcraft in view of its of versatility and ma-
neuverability. This rotorcraft is able to carry out many
different types of tasks including hovering as well as
forward flight. We built an experimental platform based
on the four-rotor rotorcraft to which we have added
an Inertial Measurement Unit (IMU) and a webcam. It
is clear that the performance of a control law heavily
depends on the precision of the sensors that are used to
estimate the orientation and position of the autonomous
vehicle. The standard sensors for measuring orientation
in UAV’s are IMU, composed of gyros, accelerometers
and magnetometers. The position outdoors is usually
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given by GPS (Global Positioning System) and laser
radars and ultrasonic sensors are used to avoid obstacles.
Nevertheless, these sensors are unfortunately heavy and
expensive and they do not necessarily have the required
accuracy. Depending on the application, we sometimes
need a global position estimation to be able to follow a
trajectory in long distance flights, while in other situa-
tions we require a high precision position measurement
for hovering above a pre-defined geographical site. We
are interested in the latter case where computer vision
can be used to estimate the position of the aircraft with
respect to a well known target in the environment. In our
case the target is composed of 4 circles of different colors
(red, blue, green and black) centered in the vertices of a
square on the ceiling of the laboratory room.

Recent works as (Nordberg, 2002) (Saripalli, 2003)
(A. Wu et al., 2005) show that the computer vision
has many advantages with respect to other sensors. A
webcam is an unexpensive device that provides a large
amount of information. Furthermore a webcam is light
and has low energy consumption. Vision could be used in
UAV’s for navigating indoor and in urban environments.

This paper presents a visual servoing technique for a
four-rotor rotorcraft. The approach is based on a camera
calibration method which can be either the two planes
approach or the homogeneous transformation approach.
The position is estimated by using the perspective of n-
points method or the plane based pose method respec-
tively. The pitch and roll angles measurements are ob-



tained from the IMU while the x−y position and the yaw
angle are provided by the vision system. We illustrate the
performance of the proposed vision-based control scheme
in simulations and in a real-time experiment.

This paper is organized as follows: Section II is devoted
to the camera calibration methods. The four-rotor ro-
torcraft model is described in Section III. The control
strategy is given in Section IV. Section V presents the po-
sition estimation algorithms. The real-time experiments
are shown in Section VI while concluding remarks are
finally given in Section VII.

2. CAMERA CALIBRATION

Camera calibration is the process of determining the
optical and internal camera geometric characteristics
(intrinsic parameters) and the position and orientation
of the camera with respect to a certain world coordi-
nate system (extrinsic parameters) (Hartley et al., 2004)
(Corke, 1996) (K. Gremban et al., 1988). Two different
techniques of camera calibration are described below.

Tow-Planes Calibration Approach

This method initially described in (H. A. Martins, 1981)
gives a solution for the back-projection problem. In (K.
Gremban et al., 1988) this result is extended given a
solution of the projection problem and we can see an
application in (J. Fabrizio et al., 2002). In addition,
this method is efficient since it requires only a matrix
multiplication and some matrix inversions. This method
is very straightforward and easy to implement. The
planes for calibration are defined as P1 and P2.

Let gij =
(
x y z

)T be a point in real world coordinates

and qij =
(
ρ γ 1

)T a point in the image plane with
homogeneous coordinates in pixels. The linear transfor-
mation between these two points is defined as

gij = Hiqij (1)

where Hi ∈ R3x3 . For n points in our calibration target,
we have consequently a system of linear equations

Gi = HiQi (2)

where gij ∈ Gi ∈ R3xn, qij ∈ Qi ∈ R3xn. The solution for
this matrix equation is obtained applying the generalized
matrix inverse, given by

Hi = [QT
i Qi]−1QT

i Pi = Q+
i Gi (3)

where Hi is the ”Homography” or matrix of transforma-
tion between the image plane and the real world. For each
calibration plane and its projection in the image plane it
is necessary to calculate one homography, defined by H1

and H2 for P1 and P2 respectively. In order to compute
the focal point of the camera, we take all points qj in
the image plane and back-project them onto each plane
P1 and P2 as the points gij = Hi ∗ qj with i = 1, 2 and
j = 1, 2, . . . , n. Each couple (g1j , g2j) defines a vector
lj = g2j − g1j . Assuming no distortion in the lens of
the camera each of those vectors converge to the focal
point F =

(
xf yf zf

)T . However, some distortion may
exist in the camera, and, in that case the location of

the focal point of the camera is computed using a least
square algorithm to find a 3D point that minimizes the
distance to all vectors.

Finally, we compute the camera’s principal point (pierc-
ing point) (ρp, γp) and the orientation of the image plane
following (K. Gremban et al., 1988). Let us denote V R =
(rx ry rz)

T and V C = (cx cy cz)
T as the vectors defin-

ing the image plane orientation and Vi = (vxi vyi vzi)
T

as the vector from the focal point F to any point gi in
the real world, i.e.

vi =
Gi − F∥∥Gi − F

∥∥ (4)

where Gi is the vector from the origin of the coordinate
system to point gi.

Projecting vector Vi on the image plane defined by V R

and V C we obtain the coordinates (ρi, γi) of point i in
the image plane as follows



ρ1 γ1

ρ2 γ2

...
...

ρn γn


 =




vx1 vy1 vz1 1
vx2 vy2 vz2 1
...

...
...

...
vxn vyn vzn 1







rx cx

ry cy

rz cz

ρp γp


 (5)

which can be rewritten using obvious notation as

B = W

[
V R V C

ρp γp

]
= WX (6)

From the above equation we can compute the camera
parameters V R, V C , ρp and γp which together with the
focal point F and the homographies H1 and H2 we have
a complete characterization of the camera.

Homogeneous Transformation Approach

In this section we present an alternative approach for
computing the parameters of a camera based on singular
value decomposition. Consider n points in the real world
defined as di = (xi yi zi 1)T and their corresponding
image point ei = (ρi γi 1)T for i = 1, . . . , n, both in
homogeneous coordinates. Then there exists a transfor-
mation T ∈ R3×4

T =
[
T 1 T 2 T 3

]T (7)
such that

E = TD (8)
where D = [d1 d2 · · · dn] ∈ R4×n and E = [e1

e2 · · · en] ∈ R3×n. The matrix transformation T can
be obtained by solving the matrix equation (9) by sin-
gular value decomposition (SVD) (see (Hartley et al.,
2004)(Zhang, 2002))




0∗ −dT
1 γi ∗ dT

1

dT
1 0∗ ρi ∗ dT

1
...

0∗ −dT
n γn ∗ dT

n

dT
n 0∗ ρn ∗ dT

n







T T
1

T T
2

T T
3


 = 0 (9)

where 0∗, T i ∈ R1x4 . The T matrix can be rewritten as

T = [ M | −M C̃ ] = K[ R̃ | −R̃C̃ ] (10)

where M ∈ R3x3 and M C̃ ∈ R3x1 are block matrices
of T . We can easily find K and R̃ matrices using



RQ decomposition over M . K ∈ R3x3 is an upper-
triangular matrix representing the intrinsic parameters
of the camera and R̃ ∈ R3x3 is an orthogonal matrix
with unitary norm per column, that gives the orientation
of the camera. Finally the vector C̃ gives the center of
the camera. Further details of camera parameters can be
found in (Hartley et al., 2004).

3. FOUR-ROTOR ROTORCRAFT MODEL

In this work we use the commercial Draganfly IV four-
rotor (Inc., n.d.) where the parameters are m = 0.5kg,
l = 0.24m, like the one shown in figure 1. This kind
of configuration has many advantages over conventional
helicopters and other configurations. This configuration
does not have a swashplate and it does not need any blade
pitch control. Furthermore the gyroscopic effects and
aerodynamic torques tend to cancel in trimmed flight,
because the front and rear motors rotate counterclock-
wise while the right and left motors rotate clockwise.

The collective input (or throttle input) is the sum of
the thrusts of each motor. Pitch movement is obtained
by increasing (reducing) the speed of the rear motor
while reducing (increasing) the speed of the front motor.
The roll movement is obtained similarly using the lateral
motors. The yaw movement is obtained by increasing
(decreasing) the speed of the front and rear motors
while decreasing (increasing) the speed of the lateral
motors. This should be done while keeping the total
thrust constant.

Fig. 1. Four-Rotor Rotorcraft Scheme

The dynamic model of the full rotorcraft used, as pro-
posed in (Castillo et al., 2005), is obtained from Euler-
Lagrange equations with external generalized forces.

mẍ = −u sin θ, (11)
mÿ = u cos θ sin φ, (12)
mz̈ = u cos θ cos φ−mg, (13)

ψ̈ = τ̃ψ, (14)

θ̈ = τ̃θ, (15)

φ̈ = τ̃φ, (16)

where x and y are the position coordinates in the
horizontal plane, z is the vertical position, ψ is the yaw
angle around the z-axis, θ is the pitch angle around

the modified y-axis, and φ is the roll angle around
the modified x-axis, m denotes the mass of the quad-
rotor, g is the acceleration due to gravity, and τ̃ψ, τ̃θ,
and τ̃φ are the yawing moment, pitching moment, and
rolling moment, respectively, which are related to the
generalized torques τψ, τθ, τφ, see (Castillo et al., 2005).

4. CONTROL STRATEGY

The control strategy used here follows the controller syn-
thesis approach developed in (Castillo et al., 2005). We
have chosen this controller because the control algorithm
is simple to implement and easy to tune. In addition, this
control strategy uses a saturation functions in order to
privilege the regulation of roll and pitch angles over the
positions x and y respectively. The experimental setup
is such that the four control inputs can independently
operate in either manual or automatic modes.

Control of altitude and yaw

The vertical displacement z in (13) is controlled by
forcing the altitude to satisfy the dynamics of a linear
system. Thus, we set

u = (r1 + mg)
1

cos θ cosφ
, (17)

where r1 is given by the PD controller

r1 , −az1 ż − az2(z − zd), (18)

where az1 , az2 are positive constants and zd is a positive
constant representing the desired altitude. To control
yaw angle we set

τ̃ψ = −aψ1 ψ̇ − aψ2(ψ − ψd). (19)

Assuming cos θ cos φ 6= 0, that is, θ, φ ∈ (−π/2, π/2) and
from (13), (14), (17), (18) and (19) it follows that, if ψd

and zd are constants, then ψ and z converge. Therefore,
ψ̇ and ψ̈ → 0, which, using (14) and (19), implies that
ψ → ψd. Similarly, z → zd.

Control of lateral position and roll

We assume ψd ≡ 0 in (19). Therefore, from (14) and
(19) it follows that ψ → 0. Note that (13), (17), and (18)
imply that r1 → 0.

The amplitudes of the saturation functions can be chosen
in such a way that, after a finite time t̂, the roll angle lies
in the interval −1 rad ≤ φ ≤ 1 rad. Therefore, for t > t̂
| tan φ−φ| < 0.54. Thus, after sufficient time, r1 is small
and the (y, φ) subsystem reduces to

ÿ = gφ, (20)

φ̈ = τ̃φ, (21)

which represents four integrators in cascade.

For (20)-(21) the nested saturation controller has the
form

τ̃φ = −σφ1(φ̇ + σφ2(φ + φ̇ + σφ3(2φ + φ̇

+
ẏ

g
+ σφ4(φ̇ + 3φ + 3

ẏ

g
+

y

g
)))), (22)

where σa is a saturation function of the form

σa(s) =




−a s < −a,
s −a ≤ s ≤ a,
a s > a.



The closed-loop is asymptotically stable, see (Castillo et
al., 2005), and therefore φ, φ̇, y and ẏ converge to zero.

Control of forward position and pitch

Finally, we control the (x, θ) subsystem given by

ẍ = −g tan θ,

θ̈ = τ̃θ.

Using a procedure similar to the one proposed for the
roll control, we obtain

τ̃θ = −σθ1(θ̇ + σθ2(θ + θ̇ + σθ3(2θ + θ̇

− ẋ

g
+ σθ4(θ̇ + 3θ − 3

ẋ

g
− x

g
)))), (23)

and thus θ, θ̇, x and ẋ also converge to zero.

5. POSITION AND ORIENTATION ESTIMATION
APPROACHES

After applying the two calibration to obtain the intrinsic
and extrinsic parameters of the camera, we can proceed
to estimate the position and orientation of the camera
with respect to a target composed of four circles. Each
one of these circles has a different color and is posed in
the vertices of a square whose geometry is well known.
To compute the center of gravity of each circle in the
scene we also apply a color calibration which provides
robustness with respect to possible changes in the lumi-
nosity of the scene. In the following we will develop the
position and orientation estimation algorithms for each
one of the calibration approaches.

5.1 Perspective N-Points Method
In this section we present a technique to estimate po-
sition and orientation based on the two planes camera
calibration approach presented previously. This approach
consists of the determination of a distance between the
camera and a set of well known points in an object
coordinate space (Fabrizio et al., 2004). Every point in
the real world can be expressed in the general coordinate
system as

gi = F + λivi (24)
where F is the focal point, vi is a unitary vector defined
in (4) and λi > 0 is a scale factor. In order to simplify
we set the origin of our coordinate system at the focal
point, i.e. F = 0, so that (24) becomes

gi = λivi (25)

Furthermore the vector that joints points gj and gi is
given by

g i,j = gj − gi = λjvj − λivi (26)
Let us assign a number to each one of the vertices of
the square target formed by the four circles. We assign
number 1 to the vertex in the upper left corner and label
the others clockwise. With this assignment we have
g1,2 + g3,4 = 0, which can be expressed as a linear
equation system


vx2 −vx3 vx4

vy2 −vy3 vy4

vz2 vz3 vz4







λ2

λ3

λ4


 = λ1




vx1

vy1

vz1


 (27)

Solving the above equation system by Cramer’s rule we
obtain

λ2 = (
∆134

∆234
)λ1 (28)

λ3 = (
∆124

∆234
)λ1 (29)

λ4 = (
∆123

∆234
)λ1 (30)

where ∆ijk are the determinants associated with Cramer’s
rule solution. Note that λi depends on λ1 with i = 2, 3, 4.
Now, defining the distance (see 26)

L1,4 =
∥∥g1,4

∥∥ = ‖λ4v4 − λ1v1‖
Combining (30) and the above we have

λ1 = L1,4/
√

1− 2v1v4(∆123/∆234) + (∆2
123/∆2

234)
(31)

Substituting the value of λ1 above into (28)-(30) we
obtain the values of λ2, λ3 and λ4. Therefore, the location
of the four circles constituting the target with respect to
an inertial frame attached to the plane containing the
four circles are given by F +λ1v1, F +λ2v2, F +λ3v3 and
F + λ4v4. The location x, y and z of the focal point of
the camera can be obtained as gi − λivi where gi is the
position of the ith circle for i = 1, 2, 3, 4. The orientation
of the camera is obtained from the knowledge of the main
vector of the camera going from the focal point to the
piercing point and the vectors λivi for i = 1, 2, 3, 4.

5.2 Plane-Based Pose Method
We now describe the coordinate transformations that
lead from 2D points on a plane P to the coordinates of
their projections in the image plane (Sturm, 2000). Let
dk be the kth point on the P plane having coordinates
(xk, yk, zk). Let the position and orientation of the plane
be given by a rotation matrix S and the translation
vector v̄ with respect to a global 3D world reference
frame. In this reference frame dk is expressed as

dw
k =

[
S3x3 v̄3x1

01x3 1

]



xk

yk

0
1


 (32)

with zk = 0. Let the position of the camera be given
by the rotation matrix R and the translation vector t.
Therefore the coordinates of dk in the local camera frame
are

dc
k =

[
R3x3 t3x1

01x3 1

]
dw

k (33)

Combining (32), (33) and (10) the coordinates of the
projected point are

ek ∼
[
K 0

]
dc

k

∼ K
[
RS Rv̄ + t

] (
xk yk 0 1

)T

The homography T is defined as

T ∼ K
[ (

RS̄
)
3x2

(Rv̄ + t)3x1

]

where S̄ is the 3x2 submatrix of S consisting of its
first two columns. Since the calibration is known we can
compute

A ∼ K−1 T =
[
RS̄ Rv̄ + t

]
(34)



Defining
N = RS

w = ST v̄ + STRT t

we can rewrite (34) as

A ∼ NW 1 = N

[
I2x2

0 w

]

In the general case, A is obtained from the following
minimization problem

min
N,w,µ

‖µA − NW 1‖2F , subject to NTN = I3

As shown in (Sturm, 2000) the solution for N does not
depend on µ and w, and thus the optimal solution for
N can be defined as

min
N̄

∥∥Ā − N̄
∥∥2

F
, subject to N̄T N̄ = I2 (35)

To find the optimal solution of (35) we compute the SVD
of Ā = U3x2S2x2V 2x2, then N̄ is given by

N̄ = UV

The third column of rotation matrix N can be computed
from the cross product of the columns of N̄ . Once N is
computed, the optimal scale factor µ and vector w are
determined by

µ =
tr(N̄ T Ā T )
tr(Ā T Ā T )

w = NT A
(
0 0 µ

)T

With all these relations we can set the position and
orientation of the camera respect to a plane located in a
well known coordinate system.

6. EXPERIMENTAL RESULTS

In this section, we present real-time experiments of the
stabilization of the four-rotor rotorcraft using the meth-
ods to estimate the position and orientation proposed in
the previous sections. We use the two planes approach
described above and we obtained the following calibra-
tion matrices given in (3)

H1 =




0.0575 −0.0005 0
−0.0007 −0.0578 0
−9.7570 7.5165 1




H2 =




0.0466 −0.0003 0
−0.0006 −0.0468 0
−7.6024 5.9127 6








(36)

for the planes P1 and P2. We computed the camera
parameters given by the focal point F , the piercing point
(ρp, γp) and the vectors VR and VC and we obtained the
following values

F =
[
1.5928 −0.7846 27.3204

]T

(ρp, γp) = [ 83.2578 113.7901 ]
VR =

[
465.0340 −4.4622 −86.2788

]T

VC =
[−6.2345 −465.5784 −59.6475

]T





(37)

On the other hand, when using the homogeneous trans-
formation approach for calibrating the camera we ob-
tained the following intrinsic parameters matrix K as in
(10)

K =




430 2 226
0 438 161
0 0 1


 (38)

6.1 Comparison between the two position estimation
methods

We compared the two calibration methods described
in the previous sections. We took a video sequence
by manually deplacing the camera above the target
composed of four circles of different colors. We tested
both calibration methods on the video sequence using
Matlab. The obtained position and orientation are shown
in figure 2.

Fig. 2. Comparison between approaches. Left side, position es-
timation using the perspective n-points method. Right side,
position estimation using the plane-based pose technique.

Figure 2 left, was obtained using the two planes approach
for camera calibration and the perspective of n points
technique for estimating the position and orientation.
Figure 2 right, was obtained using the homogeneous
transformations approach for camera calibration and the
plane-based pose technique for estimating the position
and orientation. Figure 3 presents a comparison between
both methods which give similar results.

Fig. 3. Comparison of location and attitude estimations obtained
from each method

6.2 Real-Time Platform Architecture
For simplicity, for the real-time implementation, we have
chosen the two planes approach for camera calibration
and the perspective of n points technique for estimat-
ing the position and orientation. Our experimental plat-
form is built using a Draganfly IV four-rotor rotorcraft
equipped with an IMU and a webcam. The image cap-
tured by the on-board camera is sent to a PC on the
ground through a USB connection. The frames of the
image are treated over a computer devoted to vision.
We work with 10 FPS and the image analysis pro-
gram is carried out in C++. The images analysis allows
the estimation of the position on the (x, y) plane and
the yaw angle (ψ) with respect to a well known local



frame. This information is sent by RS232 to the real-
time module which is composed of the host computer
and the target computer running on Matlab Simulink
XPc Target working in multitasking mode with a sample
rate of 0.05 sec . The control law computation is done
in the host computer. We use the commercial Futaba
radio to transmit the control signals to UAV. The radio
joystick potentiometers are connected through the data
acquisitions cards Advantech PCL-818HG (16 channels
A/D) and Advantech PCL-726 (6 channels D/A), to
the PC. We have used finite differencing of position (
q̇ = qt−qt−T

T ) to estimate the velocities (ẋ, ẏ, ż).

We performed real-time stabilization of the four-rotor
rotorcraft using computer vision and obtained the results
presented in figures 5 through figure 10. The experiment
starts at time t = 40s and finishes at time t = 140s.
The position in the (x, y) plane and the orientation
yaw angle (ψ) obtained during the experiment show
good performance of the proposed computer-vision based
control technique.
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Fig. 4. Position estimation in x− y plane.Left side, x-position of
rotorcraft. Right side, y-position of rotorcraft.
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Fig. 5. Yaw angle of the rotorcraft.
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Fig. 6. Control inputs applied to rotorcraft. Left figure shows
the roll control input. Center figure presents the yaw control
input. Right figure shows the pitch control input.

7. CONCLUSIONS
In this paper we have presented a combination of a
vision system with an IMU to compute the position and
orientation in order to stabilize at hover a mini four-rotor
rotorcraft.

Two different methodologies to estimate the position
and orientation were presented and compared. We imple-
mented in real-time the two planes approach for camera
calibration and the perspective of n points technique
for estimating the position and orientation. The vision
system is composed of an on-board camera and a target
given by four circles of different colors. The vision system

was used to estimate the position in the x − y plane
and the yaw angle ψ. The measurement of the pitch
and roll angles was obtained from an IMU at a higher
rate as compared to the estimation provided by the
vision system. The experimental tests showed that the
proposed vision system based control technique performs
satisfactorily for stabilizing a mini-aerial vehicle in hover.
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