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Abstract
Two electromechanical models of synchronous ma-

chines are considered. For these models the differential
equations with angular coordinates are obtained.
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1 Introduction
The rotating magnetic field, generated by alternate

current in stator windings, is one of the basic elements
of synchronous and asynchronous ac motors [Gorev,
1985; Yanko-Trinitskii, 1958; Kononenko, Sipailov
and Khor’kov, 1975; Vazhnov, 1969; Adkins, 1960;
Vol’dek, 1980; Ivanovo-Smolenskii, 1980; Venikov,
1985]. For the first time such a field was obtained by
N. Tesla and G. Ferraris in 1888 year.
In this case a natural step is the study of a rotor mo-

tion of synchronous machine in the rotating coordinates
connected with a rotating magnetic field, generated by
currents in stator windings. The present work is de-
voted to the derivation of differential equations for ro-
tor motion in such coordinate system.
The generation of equations for different types of ro-

tors turns out rather simple and natural. In addition,
for electromechanical models of T-rotor (Fig. 1) such
equations coincide with well-known equations, consid-
ered in the works [Szego, Olech, and Cellina, 1968;
Tricomi, 1931; Tricomi, 1933; Andronov, Vitt, and
Khaikin, 1959; Barbashin, Tabueva, 1969; Fagiuoli,
Szegö, 1970].
These equations are highly distinct from the equations

obtained here also in the rotating coordinates for differ-
ential equations of electromechanical model of salient-
pole rotor (Fig. 2). For such a model the problems on
a static stability of synchronous machines are also con-
sidered.

Figure 1. f is an exciting winding. yq and yd are damper wind-
ings.

Figure 2. Salient-pole rotor. Exciting windings are shown.

2 T-rotor
Consider first the motion of one wind of winding in

the rotating coordinates, rigidly connected with mag-
netic vector. Suppose that the constant voltage e is ap-
plied to the wind. The current i(t) in winding is deter-
mined with regard to Ohm’s law and the law of electro-
magnetic induction.

L · di(t)
dt

+ R · i(t) = e + nSB(sin θ(t)) · θ̇(t) (1)



In this case the equation of motion of rotor with the
located on it exciting winding with respect to rotating
magnetic field takes the form

Iθ̈ = −βnSBi(t) sin θ(t)−M. (2)

In equations (1), (2) R is a resistance L is a winding
inductance, S is an area of one wind of winding, n is a
number of winds in winding, B is a magnetic intensity
θ(t) is the angle included between the plane of wind
with current i1 and the plane, which is perpendicular
to magnetic vector; I is a moment of inertia of rotor,
β is a coefficient of proportionality, M is a moment of
external load.
The change of variables θ := −θ, θ̇ = −η, z = i(t)+

nSB
L cos θ makes it possible to reduce system (1), (2)

to the third order system

θ̇ = η,
η̇ = a1 − a2z sin θ + a3 sin θ cos θ,
ż = a4 − a5z + a6 cos θ,

(3)

which as a model of synchronous machine was studied
in [Szego, Olech, and Cellina, 1968].
Here a1 = M

I , a2 = βnSB
I , a3 = β(nSB)2

IL , a4 =
e
L , a5 = R

L , a6 = nRSB
L2 .

Suppose, in rotor slots there are two perpendicular to
each other windings. They are schematically shown
in Fig. 3. The constant voltage e is applied (usually
by electromotor brushes) to winding with the current
i1(t). The damping winding with the current i2(t) is
short-circuited.
Now we consider, as before, the motion of two winds

of winding in the rotating coordinates rigidly connected
with magnetic vector [Leonov, 2006; Leonov, 2006a].
The parameters R,L, S of windings are assumed to be
the same. In this case if the mutual induction of wind-
ings can be neglected, then the currents i1(t) and i2(t)
in windings are given by formulas

L
di1(t)

dt
+ Ri1(t) = e + nSB(sin θ(t)) θ̇(t),

L
di2(t)

dt
+ Ri2(t) = nSB(cos θ(t)) θ̇(t).

(4)

Here θ(t) is the angle included between the plane of
a wind of winding with the current i1 and the plane,
which is perpendicular to magnetic vector.
The equation of motion of rotor with the located on it

two windings with respect to rotating magnetic field is
as follows

Iθ̈ = −βnSB(i1(t) sin θ + i2(t) cos θ)−M. (5)

We assume first that L = 0. Then, substituting (4) in
(5), we obtain

Iθ̈ = −β(nSB)2

R
θ̇ − βnSBe

R
sin θ −M.

Figure 3. Scheme of two windings. Here it is shown a wind of ex-
citing winding with the current i1(t) and a wind of damping wind-
ing with the current i2(t).

By the change θ → −θ we can represent this equation
in the form

θ̈ + kθ + b sin θ = γ. (6)

Here

k =
β(nSB)2

IR
, b =

βnSBe

IR
, γ =

M

I
.

Without loss of generality, suppose b = 1. Equation
(6) can be reduced to the equation of above type by
making a change in the time: τ = t ·

√
b .

Let us change from equation (7) to the equivalent sys-
tem

θ̇ = η,
η̇ = −αη − sin θ + γ.

(7)

To the synchronous operating mode of synchronous
machine corresponds the equilibrium state of system
(7):

θ(t) ≡ θ0, η(t) ≡ 0,

where θ0 satisfies the relations

sin θ0 = γ, cos θ0 > 0.

This operating mode occurs for γ < 1. In this case it is
locally stable.
The equilibrium states of system (7)

θ(t) ≡ θ1, η(t) ≡ 0,

where θ1 satisfies the relations

sin θ1 = γ, cos θ1 < 0,



are unstable and correspond to physically nonrealizable
operating mode of synchronous machine.
In the case γ > 1 system (7) does not have equilibrium

states (its stationary set is empty).
Note that the stationary sets of system (4), (5) for

L = 0 and for L > 0 coincide. Also, a local stability
and instability of stationary solutions in passing from
equation (6) (the case L = 0) to system (4), (5) (the
case L ≥ 0) are preserved.
Note that the angle θ is called an operational angle of

synchronous motor, η is a motor slip.
Consider further the electromechanical model of three

windings, shown in Fig. 4.

Figure 4. Scheme of three windings. Her it is shown two parallel
winds: a wind of exciting winding with the current i1(t) and a trans-
verse damping winding with the current i2(t) and the orthogonal to
them wind of longitudinal damping winding with the current i3(t).

Consider, as previously, the motion of windings in the
rotate coordinates, rigidly connected with the magnetic
vector B. We introduce the parameters of windings:
S1, S2, S3 are areas of every wind, L1, L2, L3 are the
inductance of windings, R1, R2, R3 are the resistance
of windings. With neglect of mutual induction of wind-
ings we obtain the following system for the currents
i1(t), i2(t), i3(t):

L1 · di1(t)
dt

+ R1 · i1(t) = n1S1B · sin θ(t) · θ̇(t) + e,

L2 · di2(t)
dt

+ R2 · i2(t) = n2S2B · sin θ(t) · θ̇(t),
L3 · di3(t)

dt
+ R3 · i3(t) == n3S3B · cos θ(t) · θ̇(t).

(8)
For the dynamics of rotor with the located on it three

windings in rotating magnetic field we have the follow-
ing equation

Iθ̈ = −βB(n1S1i1(t) sin θ + n2S2i2(t) sin θ+
+ n3S3i3(t) cos θ)−M.

(9)

Here n1, n2, n3 are the number of winds in each wind-
ing.

Neglecting the inductance of damping windings, i.e.
assuming in system (8), (9) L2 = L3 = 0 and making
the transformation of coordinates: θ = −θ, η = −θ̇,
z = i1(t)− e/R1, we can reduce system (8), (9) to the
form

θ̇ = η,
η̇ = −(a1 + a2 cos 2θ)η − a3z sin θ − (a4 sin θ − a5),
ż = −a6z + a7η sin θ.

(10)
Here a1 = βB2

2I

(
n2

2S2
2

R2
+ n2

3S2
3

R3

)
, a2 =

βB2

2I

(
n3

3S2
3

R3
− n2

2S2
2

R2

)
, a3 = βn1BS1

I , a4 =
βn1S1Be

IR1
, a5 = M

I , a6 = R1
L1

, a7 = n1S1B
L1

.
In the treatise [Yanko-Trinitskii, 1958] system (10)

is represented as the equations of nonsalient-pole syn-
chronous motor in the case of approximate account of
damping windings.
Having performed the change of variables: θ := −θ,

η = −θ̇, y1 = i1 + n1S1B
L1

cos θ, y2 = i2 +
n2S2B

L2
cos θ, y3 = −i3 + n3S3B

L3
sin θ we can rep-

resent system (8), (9) in the form

θ̇ = η,

η̇ = (−b1y1 − b2y2) sin θ − b3y3 cos θ+
+ b4 sin θ cos θ + b5 ,

ẏ1 = b6 − b7y1 + b8 cos θ,

ẏ2 = −b9y2 + b10 cos θ,

ẏ3 = −b11y3 − b12 sin θ,

(11)

with the positive parameters bj (j = 1, 2, . . . , 13).
In the work [Fagiuoli, Szegö, 1970] the following sys-

tem, which is close to system (11) and has the form

θ̇ = η,

η̇ = (−a1x1 − a2x2) sin θ − a3x3 cos θ+
+ a4 sin θ cos θ,

ẋ1 = a5 − a6x1 + a7x2 + a8 cos θ,

ẋ2 = a9x1 − a10x2 + a11 cos θ,

ẋ3 = −a12x3 − a13 sin θ

(12)

with the positive parameters ai (i = 1, 2, . . . , 13) such
that a6a10 − a7a9 > 0, is regarded as the system of
equations of synchronous motor with zero load.
By the nonsingular linear transformation of variables

y1, y2, y3, system (11) can be reduced to system (12).
All the derived here equations are obtained due to a

general approach when the coordinate system, rigidly
connected with rotating magnetic field, and the motion
of electromechanical model of synchronous machine
in this coordinate system are used. Such considera-
tion is rather demonstrative and it simplifies the obtain-
ing of well-known equations of Gorev–Park [Gorev,
1985; Yanko-Trinitskii, 1958; Kononenko, Sipailov



and Khor’kov, 1975; Vazhnov, 1969; Adkins, 1960;
Vol’dek, 1980; Ivanovo-Smolenskii, 1980] under above
conditions.

3 Salient-pole rotor
Suppose now that in the rotor slots there is located

an exciting winding only. It is shown schematically in
Fig. 5.
By assumption all four winds of winding are the same.

As in the case of two windings we consider the motion
of two pairs of parallel winds of windings in the coor-
dinate system rigidly connected with magnetic vector.
Then the currents i1(t), i2(t) and i3(t), i4(t) in the first
and second pairs of winds of windings are given by the
following equations

L
di1(t)

dt
+ Ri1(t) = e + (2nlB sin α) sin θ(t) · θ̇(t),

(13)

L
di2(t)

dt
+ Ri2(t) = e + (2nlB sin α) sin θ(t) · θ̇(t),

(14)

L
di3(t)

dt
+ Ri3(t) = e + (2nlB sinα) cos θ(t) · θ̇(t),

(15)

L
di4(t)

dt
+ Ri4(t) = e + (2nlB sinα) cos θ(t) · θ̇(t),

(16)
Here the parameters R,L, B, e and the variable angle
θ(t) are the same as before.

Figure 5. Scheme of four windings. Here it is shown two orthog-
onal pairs of parallel winds of exciting winding (a pair with the cur-
rents i1(t) and i2(t) and a pair with the currents i3(t) and i4(t))

The equation of motion of rotor with the located on
it two pairs of parallel winds of exciting winding with

respect to rotating magnetic field is as follows

Iθ̈ = −2βnll0 sinα[(i1(t) + i2(t)) sin θ+
+ (i3(t) + i4(t)) cos θ]−M.

(17)

Here l is a length of one side of wind, l0 is a length of
rotation radius-vector, n is a number of winds in each
winding, β is a coefficient of proportionality.
Equations (13)–(17) are the equations of salient-pole

synchronous machine.
Assuming L = 0, substituting (13)–(16) in (17), and

replacing θ by −θ, we obtain

Iθ̈ + kθ̇ + b sin
(
θ − π

4

)
= γ. (18)

Here k = 8βl0nSB2 sin2 α/(IR), b =
4
√

2 βneBll0 sin α/(IR), γ = M/I .
By the change of variables θ = θ − π

4 equation (18)
can be reduced to equation (6).
Note that a damping moment occurs in the case of

orthogonal disposition of windings. Therefore in a
salient-pole machine this moment is supplied by excit-
ing windings.
The following notation are needed for the sequel:

aα =
2nlB

L
sin α, bα =

2βnBll0
I

sin α.

By the change in system (13)–(17) from θ to −θ equa-
tion (17) takes the form

θ̇ = η,
η̇ = −bα

(
i1(t) + i2(t)

)
sin θ − bα

(
i3(t) + i4(t)

)
cos θ − γ.
(19)

The equilibrium states of system (13)–(16), (19) under
the condition

γ <
2
√

2 ebα

R
(20)

are the points θ = θi + 2nπ (n is an integer number),
η = 0, i1(t) = i2(t) = i3(t) = i4(t) = e/R. Here
θi (i = 0, 1) are the roots of the following equation

ϕ(θ) = γ, (21)

where

ϕ(θ) =
2
√

2 ebα

R
sin

(
θ − π

4

)
. (22)

In this case we have

ϕ′(θ0) > 0, ϕ′(θ1) < 0.



A stationary set of system (19), (13)–(16) is empty un-
der the condition

γ >
2
√

2 ebα

R
. (23)

Stability or instability of its characteristic polynomial,
namely

f(p) =
(

R

L
+ p

)3 [
p3 +

R

L
p2+

+ (2aαbα + ϕ′(θi))p +
R

L
ϕ′(θi)

]
,

is defined by stability or instability of the third order
polynomial in square brackets.
It is known that necessary and sufficient conditions of

the polynomial

p3 + a2p
2 + a1p + a0

are the following

a2 > 0, a1 > 0, a0 > 0, a2a1 − a0 > 0, (24)

These conditions are called, sometimes, the conditions
of Vyshnegradsky [11].
It is easily seen that the characteristic polynomial f(p)

is stable under the condition ϕ′(θi) > 0 and is unstable
under the condition ϕ′(θi) < 0. Therefore the equi-
librium states θ = θ0 + 2nπ, η = 0, i1(t) = e/R,
i2(t) = e/R, i3(t) = e/R, i4(t) = e/R are stable.
They correspond to operating modes of synchronous
motor. The equilibrium states θ = θ1 + 2nπ, η = 0,
i1(t) = e/R, i2(t) = e/R, i3(t) = e/R, i4(t) = e/R
are unstable, i.e. physically unrealizable.

4 Salient-pole rotor with damping windings
We assume further that besides an exciting winding

in the slots of salient-pole rotor there are two orthogo-
nal short-circuited damping windings with the currents
i5(t), i6(t).
Consider the electromechanical model of six wind-

ings. It consists of two orthogonal pairs of parallel
winds of exciting winding (a pair with the currents
i1(t) and i2(t) and a pair with the currents i3(t) and
i4(t)) and centered orthogonal pairs of damping wind-
ings with the currents i5(t) and i6(t).
We also assume that the parameters of damping wind-

ings: L being inductance, R being armature resistance,
S being an area of one wind of winding, coincide with
the same parameters of exciting winding.
In the coordinate system, rigidly connected with

the magnetic vector B, the exciting currents

i1(t), i2(t), i3(t), i4(t) and the damping currents
i5(t), i6(t) are given by the following equations

L
di1(t)

dt
+ Ri1(t) = e + (2nlB sin α) sin θ(t) · θ̇(t),

(25)

L
di2(t)

dt
+ Ri2(t) = e + (2nlB sin α) sin θ(t) · θ̇(t),

(26)

L
di3(t)

dt
+ Ri3(t) = e + (2nlB sin α) cos θ(t) · θ̇(t),

(27)

L
di4(t)

dt
+ Ri4(t) = e + (2nlB sin α) cos θ(t) · θ̇(t).

(28)

L
di5(t)

dt
+ Ri5(t) = n0SB sin θ(t) · θ̇(t), (29)

L
di6(t)

dt
+ Ri6(t) = n0SB cos θ(t) · θ̇(t). (30)

The equation of motion of rotor with exciting winding
and damping windings have the form

Iθ̈ = −2βnBll0 sin α[(i1(t) + i2(t)) sin θ+
+ (i3(t) + i4(t)) cos θ]− β0n0SB[i5(t) sin θ+
+ i6(t) cos θ]−M.

(31)
Here β0 is a coefficient of proportionality, n0 is a num-
ber of winds in each damping winding.
The equilibrium states of system (25)–(31) under the

condition (20) are the points θ = θi + 2mπ (m is an
integer number), θ̇ = 0, i1(t) = i2(t) = i3(t) =
i4(t) = e/R, i5(t) = i6(t) = 0. Here θi (i = 0, 1)
are roots of equation (21), where the function ϕ(θ) is
given by relation (22).
A stationary set of system (25)–(31) is empty under

the condition (23).
The characteristic polynomial of Jacobian matrix:

(
R

L
+ p

)5 [
p3 +

R

L
p2 + (c0d0+

+ 2aαbα + ϕ′(θi)) p +
R

L
ϕ′(θi)

]
,

is stable if ϕ′(θi) > 0 and unstable if ϕ′(θi) < 0.
Here

c0 =
n0SB

L
, d0 =

β0n0SB

I
.



Therefore the equilibrium states θ = θ0 + 2mπ, θ̇ =
0, i1(t) = i2(t) = i3(t) = i4(t) = e/R, i5(t) =
i6(t) = 0 are stable and correspond to operating modes
of synchronous motor, in which case the equilibrium
states θ = θ1 + 2mπ, θ̇ = 0, i1(t) = i2(t) = i3(t) =
i4(t) = e/R, i5(t) = i6(t) = 0 are physically unreal-
izable.
Assuming L = 0 in (25)–(30), substituting (25)–(30)

in (31), and replacing θ by−θ, we obtain equation (18),
where

k =
β0n0(SB)2

I
+

8βnνB2ll0 sin2 α

IR
,

b =
4
√

2 βneBll0 sin α

IR
, γ =

M

I
.

Having performed the change of variables θ = θ − π
4

we again arrive at equation (6).
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