Application of Robust Decentralized Control
to the Group Flight of Airplanes’

Elizaveta A. Parsheva*

* Astrakhan State Technical University
16, Tatishcheva Str., Astrakhan’ 414025 Russia
(e-mail: parsheva-el@yandexl.ru)

Abstract: The problem of a robust control system design for interconnected systems with
structural and parametrical uncertainty was solved for the case where derivatives of input and
output parameters cannot be measured. The order of the mathematical model may change over
time. Operability of the designed control systems in the case of non-measurable and bounded
disturbances acting on the controlled plant was demonstrated. Only the measurable variables of
the local subsystems are used to generate the control actions, that is, control is completely

decentralized.
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1. INTRODUCTION

The problem of control with scalar input and output has
become one of the classical problems of modern control
theory and plenty of methods for robust control design have
been developed. The key developments in robust control
theory, as well as a comprehensive bibliography, can be found
in (Polyak et al., 2002; Nikiforov, 2003). In monograph
(Bukov, 2006) the classification of disturbances of various
types and methods of their compensation are given.

In Bukov (2006), Nikiforov (2004a,b) an internal model of
disturbances is used to solve the problem whereas (Nikiforov,
1997; Miroshnik et al., 2000) use the methods of the theory of
robust and adaptive systems. The approach to the synthesis of
static, robust controllers for linear systems that is based on the
linear-quadratic problem that is in turn based on the
parameterization of Lurie—Riccati equations is presented in
(Bukov et al., 2007). Robust systems with compensation of
disturbances that use these methods are studied in Bobtsov,
(2003a,b)

A simple robust control algorithm that remains the same for
various types of plants is proposed in Tsykunov (2008). It is
shown that the algorithm compensates for parametric and
external disturbances with a given accuracy. A closed system
works here as an implicitly given nominal model whose
parameters are used in control.

It is important to note that almost all the suggested methods
are based on an assumption that the structure of a plant is
known i.e. the order of a system of differential equations is
known and parametric and external disturbances are
unknown. There are various studies devoted to the problems
of control with an unknown order (Tao et al., 1993; Hoang et
al., 2007; Furtat et al., 2008). Sources (Hoang et al., 2007)
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consider control problems of linear, stationary systems with
an unknown and constant order of numerator and
denominator for their transfer functions. Source (Furtat et al.,
2008) considers a wider class of systems with disturbances
that are able to influence both the parameters of the system as
well as its order.

This paper considers the problem of robust control for
interconnected systems with unknown parameters which are
subject to the uncontrolled external and parametric
disturbances. These disturbances may change the order of a
system in unpredictable ways. This means that the order of a
system is unknown and scalar input and output signals can
only be measured. To solve the problem, a simple robust
control algorithm is proposed that compensates for this class
of uncertainties with a given accuracy and a finite time. Only
the measurable variables of the local subsystems are used for
the control i.e. control is completely decentralized.

Decentralized control can be used for a wide rage of large-
scale complex systems including satellite networks, group
flights, electric power systems, robots etc. Decentralized
control is also very efficient when there is a need to design
the control algorithms relying on local information. Modern
computer networks provide an efficient infrastructure for a
real implementation of such algorithms.

2. PROBLEM STATEMENT

Let us consider an interconnected system whose local
subsystems’ dynamic processes are described by the
following equations

O;(P)y; () =k;R;(P)u; (1) + f: (D) +
M
+2 8S;(P)y;(0), i#],
=l

where P =d/dt — differential operator; Q;(P), R;(P), S;(P)

are the linear differential operators with unknown constants

1
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parameters; u;(¢) is a scalar control action; y;(¢) is a scalar

controlled variable in the i-subsystem which can be
measured; f;(¢) is an uncontrolled disturbance.

Decentralized control for such a system is defined as the
problem of finding M local control blocks, each of which
only can access current information about a system. Required
quality of transition processes in a subsystem is defined by
equations of the local nominal models

Qmi(P)ymi(t) = kmir[(t)7 i= LM (2)
Here Q,,;(P) are linear differential operators; k,,; >0; 7;(¢)
are the scalar bounded control actions.

It is necessary to design a control system for which the
following condition will be satisfied:

limle; (1)] = limy,; (1) = y,; (0| < 5 if 2T . (3)
t—0 t—00

Here ¢ is the accuracy of the dynamic error e;(¢); 7 is the
time beyond of which the dynamic error should not exceed
the value ¢ . It is forbidden to use measurable parameters of
one subsystem in other local subsystems.

Assumptions:

1) R;(1),0,,:(1),R,,;(A) are Hurwitz polynomials (A is

a complex variable in Laplace transformation);

i) the orders of degQ; =n;; degR;, =m;; degS; =n

n; <n; —1 are unknown and relative degree of the

i

local system y; =n; —m; >1;

iii)  the upper bound y, 2 y;of the relative order y, as
well the upper bound of the operator Q, are defined,
ie. n; <n;;

iv)  the orders of the polynomials Q,,; are equalto y,, ;

V) we know the coefficients’ sings k; and assume that
k;>0;

vi)  the coefficients of the operators R;(1),0;(4) depend
on the vector of unknown parameters £ € E, where =

is a bounded set;

vii)  control actions #;(¢) are bounded functions;

viii) we cannot use the derivatives y;(¢), u;(¢), r;(¢)of the

signals.
ix) the signal of local nominal model y,,;(t) and its

derivatives y,, are bounded functions;
x) the external disturbance f;(¢) is a bounded function of
time with an unknown changes range;

3. METHOD OF SOLUTION
Let us first write the O, (P), R;(P) in the following form:

0,(P) =0y (P)+AQ,(P), R.(P)=Ry;(P)+AR,(P),
where Q;(P) is an arbitrary linear differential operator, such
that the polynomial Q,);(1) is Hurwitz polynomial,
deg Qy; = n;. Then the operator AQ;(P) is degAQ; < n;, i.e.
if degQ, <degQ, then degAQ; =degQ,,, and if

degQ; =degQ,; then degAQ; <n;—-1. Introduce the
arbitrary linear differential operator Ry (P),
degRy; =n; —y,;, such that the polynomial Ry;(4) is

Hurwitz polynomial. The structure of AR;(P) is such that if
— 7, then degAR; =n;
then degAR; = m;. This means that the above decomposition
of the operators Q;(P), R;(P) is correct because AQ,;(P)and
AR;(P) either have non-zero coefficients or an appropriate

amount of their components are equal to zero. The
decomposition (Furtat et al., 2008) is different from the
known methods of parameterization of the equations.

m; <n; — V> and if m; >n, -y,

Let us transform the equation of a system (1):

_KiRoi(P) AR (P).
0 @) (“"“)* LR O @
_A0,(P) u o s,
k RO’ () TRy kiR (P) TRy O J %:ij kiRy; (P) & (t)}

since operators O, (P) and R, (P) are arbitrary, we can
choose them in order that the following condition is obeyed
Ry(A) _ 1 . 5)
0o (1) Opi(A)
Let us write the equation for error e;(¢)=y;(t)—y,; (),
subtracting (2) from (4), and taking into consideration (5),

AR. (P AQO. (P
le-(P>e,-(r)=kiu,-(r)+( ACOP /1 B
©)
,(r)}

Ry; (P) Ry (P)
Sij (P)
RO[ (P)
To obtain the main result, let's use the approach (Tsykunov,
2008), which allows to compensate disturbance. Let choose a
local control law in the following form
u; (1) = a;8;(t). (7

where a; >0; 9;(¢) is an additional control action. Then the

1
ROt (P)

M
———— [ (O) =k (O+ D

J=Li#j

following equation of error can be derived from (6)

0,.:(P)e; (1) =9:(1) + 0, 0. ®)
1

00 L (ar,(®) u0)- ©)

1

Sy (P)
AQ; (P)y
{ O (P)y; (1) - /%‘;/ R () (I)J

Ryi(P)

———— fi(O) =kt (1) + (kye; = 1)8 ().

RO[ (P )
Signal ¢, () contains all components action of which in the

error needs to be compensated. It is necessary to extract the
signal.

Let’s define the additional loop
0, (P)e; (1) =3,(t)

equation with  the

(10)
and write the signal

Ci()=e;()-¢():

error



0, (P)S: (1) = ; (1) .

If the derivatives ¥, of the output signal y;(r) can be

measured then defining the variation law of the additional
control action in the following form

9 (1) = =0, (P)g; (1) = —; (1), 11
we will get the following equation of the closed loop system
using the error equation (8)

0, (P)e; (1) = 0. 12)
Let us show that all the signals in the closed loop system are
bounded. It is necessary for the efficiency of the algorithm
which will be described later. Equation (12) shows that the

signal y;(#) and its derivatives J, are bounded due to

assumption x). Then from conditions of the assumptions
deg AQ;(P) = n; and because R;(A) is Hurwitz polynomial

of n; —y,; degree we can conclude that
()= -k
q)lz() ROZ(P)f() mzz()
1 Sy (P)
AQ; (P
T P){ 0P~ %j TN )J

is a bounded value. It is necessary to show that the chosen
control action is bounded. For that purpose let’s substitute
@;(¢t) in (11) with the statement above and resolve derived

equation for 9, (¢):

(1) = _%((011' ®+

i

e (AR; (P (z))} (13)

Let us substitute $;(¢) in equation (9) and resolve it for
u;(t), taking into consideration following parameterization
R;(P)=k;Ry;(P)+AR;(P):
R; (P)u; (t) = —¢y; (2).
From condition of assumption ii) and boundedness of ¢;(¢)

boundedness of local control action u,(¢) is followed.

Because we cannot measure the derivatives, let’s formulate
the local law of additional control action & (¢) in the

following form
8,(1) = =g, & (1),

where g!. = [qmym s oo Gl 1] — vector composed with

(14)

polynomial coefficients
) 1
Qmi (ﬂ,):ﬂ/l" +qm1ﬂ/m +.”+qm}/m ;

()= col(;’,-, CitsCinsones El-ym_ ); £, (1) is estimation of

derivatives P* g (t) obtained from filters
Zy (1) =— FZI H+— bP g (),
& H” (15)

gik :LOiZik» i=LM, k=1y,.
Where z,, € R"; Ly =[1,0,....0]; b/ =[0,...,0,1}

-1 1 0 0
0 -1 1

F=[t . . 0];
0 - 0 -1 1
0 - 0 0 -1

u>0is small number. If we use (14) and (15) in Laplace
transformation we’ll get the following

0, (1)
8.4y =——2mD)_ -3y
) (,uﬁ+1)7“" &

Taking into consideration (10) and statement for error signal
£i(t)=e,(1) =& () we have

(LA+1yw -1
Substituting & (¢) in equation (7) with the obtained statement

8,(2) =~ e(2).

and using the original of Laplace transformation we’ll get
control algorithm. Obviously that control law now is
technically feasible since it contains only known or
measurable variables.

Proposition. If assumptions i) - x) are obeyed then there are
numbers py >0, Ty >0 such that under conditions p < p,,

T > T, control algorithm

(P 1 1) 1) = -0, (Pres 1) (16)

guarantees that target condition (3) is obeyed, where a; > 0.

It is necessary to note that the described algorithm remains
invariant if there is state delay in a system as well as in the
case when a system is in a steady state with unknown
parameters with known boundaries.

Proof. Let’s consider vectors of the estimation error of
derivatives Pk§ 0]
(1) = 24 )+ F7'B PG (), k=17,

Here the vector F,”'b; = h; has first component equal to -1. If

i=LM.

to prove that the value |77ik (t)| is small, then from condition
Ca () -PFe, (t)‘ <|m (®)] it follows that estimation ¢ (¢) is

earto P* ¢;(¢) . From (15) we’ll get the equation of dynamic

for vectors nik ®):

1y (1) = Fn,k ) +h P ),

ik(f):Liﬂik(t)a i=L,M, k=1Ly,.

Taking into account that the additional control action is
formulated as (14), we can transform the equation of error
into the following form

0, (P)e;(t) = —qp;A (1), (17)
Whereqrz;i = [qm}/m—la s Gmls 1] ;Aik (t) = éjik (t)_Pké’i(t) 5

Ai(8) = collAy (1), Ay (8, ..., Ay, (1)) Let’s  transform



equation (17) into vector-matrix form. As a result we’ll get
the following equations set of the closed loop system:

‘(’.‘i (t) = Amt z(t)+b qmtA (t) €; (t) = Ligi (t)7
i (O) = iy (6)+ b P E L (0),
Aik(t):Linik(t)a i:LM’ k:lﬂyui’

where

(18)

=4, =pu. We've got singularly perturbanced
system as x4 — small enough number. Let us use Lemma
(Brusin, 1995).

Lemma (Brusin, 1995). If a system is defined by the equation
)'c:f(x,,ul,,uz), xeR™, where f(t)
function that is Lipshits function with respect to x and in the
case when p, =0 it has a bounded closed region of
dissipation Q) = {x | F(x)< 5}, where F(x) — positive
defined continuous piecewise smooth function, then there is
Ho >0 such that under pi, < p the initial system has the

is a continuous

same dissipative region Q| , if for some numbers 51 and 1,
Jfor u, =0 following condition is obeyed

T
sup ((wj f(x, ,ul,O)] <-Cy, if F(x)=C. (19)

f<m\\ Ox

In the case of x, =0 in (18) we have asymptotically stable

since A ., F. are

mi» 1

system for variables &;(t) and 7;(?),

Hurwitz matrixes. It is the same situation which we had for
measuring the derivatives i.e. lime; () =0. It was proved
t—0

that if this condition is obeyed all the signals in the system are
bounded. It means that there is a certain region

Q = {gi (t)’ ﬂik (t)> é’i (t) . ‘Pk+1§j (t)‘ < é‘lk’ 51‘ (t)| < é‘Zk B

|77ik(t)|<53kaF(giaﬂik)<cl}» k=L7y,,
where signals e; (¢), 7, (¢), ¢;(¢) are within their boundaries

(7u+D
’ é’i (t) >

block-diagonal
= diag{F,, F,,..., F;},
. hi}, C = diag{Ll-, L,..., Li},
then equations (18) will take the following form
E(0)= Ayg; (O +bg A (D), e(t) = L&, (0),
mn; () = Fon; (1) + 1, 8,0, (1),
A =C (D), i=LM.
Evidently that condition (19) was obeyed if to take Lyapunov
function for F;

for some initial conditions from Q,, .

Let us consider two vectors HiT = {{ (), ...

0! (O =[na®. 1@, .m0, and
matrixes with y,; diagonal blocks Fj,
B, = diagih;, b,

isise

(20)

M
Ve 0)=3. e/ @H &0 +n OHm @) @)

i=1
where the positive defined symmetric matrixes H,;, H,;, are
determined from equations solution

T
HyjA,; + A, Hy =—pyl, =0y,
(22)
HyiFi + F; sz P2l =0y
where py; >0, py; >0, O; =0j; >0, Oy =05, >0. Thus

in accordance with Lemma (Bukov et. al., 2008), there is
Ho >0 such that if g <y, then Q remains dissipative

region of system (18).

However it is necessary to note that keeping the dissipative
region doesn’t guarantee that the set of attraction ), remains

the same in a singularly perturbed system.

Let us calculate the full derivative of function (21) on
system’s trajectories (20), taking into account equation (22)

and assigning i, =y, = ,uo :

V(e (@), m(t)) ( pule O -l 00ye,(0)+
1

+ 2‘9 (t)le lqmiAi (t) -

LEN TR0
Ho

—ﬂinf ()0, () +2n] (t)H ,;B,0; (r)} (23)
0

Let us use estimations
267 (OH byq i 0 <l O + sl

1
277;'T ()H;B;6,(1) < ﬂ—||77,- (t)uz + HoPai>
0

A .
—5l (00,2, (1) < —#ﬁi‘;))sf (OH 2, ()
0T (00, (1)< - : E%z)) 0T (OH (0,

2 27,
where P3i = HHlibiqiz‘Ci” > Pai = ||H2iBi||zé‘1% 5 ﬂminv ﬁ“max
i=l1

are the minimal and maximal characteristic numbers of the
mentioned matrixes. Using those estimations into (23) we’ll
get

V(e (t),m; (D)< GoV+Z (o -
i=1

e -

o1
(2L ol )
Mo Ho

)
where o, = min{ min (Q11) Anin (0o } If to choose
max (le) ﬁ“max (HZi)
Pii» Pp; from conditions
pu-1>0, 2oL _posq, 24)

Ho  Ho
the following inequality is correct:

. M
V(gi (), m; (t)) < _O'OV(gi @®),m; (t))+ Z HoPs;-
i=1
If we solve the inequality

M wopai
V(e (0.7,(0) <V (0)e ™ +3 Loy,
i=1 0



we can see that if to choose g, small enough we get the
following region of attraction:
& HoPa
Qy ={a@m@): Vie,Om©)< 3 ==
i=1 0
Inserting the required value 7, from the target condition (3)

into the right part and taking into consideration the
inequalities

le: 0 <l o) <

—out M )
Ve ™ | > Ho Py
/Imin (Hli) i=1 O-Oﬂmin (Hli )
we get the estimation of the value ¢ in the target condition (3)

M
5< 1 (V(O)e—aot + Z HoPai J ,
Amin (H1;) =l Op

that shows that there are numbers x4, and 7, guaranteeing

that target condition will be obeyed. Thus for x < y, varying
py; in (24) and u, we can get the required value & in the
target condition (3).

u,
Ou® | 4 ! »
(}4P+1)7“ -1 _—>subsysteml—1~
g

, w b
n, local system 2 subsystem? Y2
——»{ control2 :
”
M—P local system| Uy L’ N M Yy

’—. control M |_.

Fig. 1. The structure scheme of robust control system

4. EXAMPLE

As an example, the system can be used to solve the problem
of decentralized control of the trajectory of the group of the
pilotless aircrafts of different types in the horizontal plane.
The aircrafts do not exchange data with each other. Trajectory
control for each aircraft is performed using radio commands
from a ground-based control station.

First, the robust local etalon models (2) are selected. Then, we
generate the local regulators for each aircraft using (16).
Using numerical analysis the group flight under wind
disturbance is considered.. The obtained results demonstrate
the efficiency of the suggested approach to decentralized
control.

Unlike the work (Bukov et. al., 2008; Krasovsky et. al., 1986)
a broader class of the systems is considered here because of
taking into account the ability of the systems to adapt to
external, parametrical, and structural disturbance. Let us
consider for simplicity the flight of two aircrafts (the number
of the aircrafts in the model can be easily increased).

The first aircraft will be the lead aircraft and the second one is
a wingman aircraft. The wingman aircraft is controlled by the
speed according to a predefined program. That aircraft has to

Fig. 2. Model of the aircraft group flight

keep the distance AD, . Let us also assume that the wingman
can measure this distance. The change of the distance is
described by the equation AD =V, -V, .

The speed V), is defined by the dynamics of the lead aircraft
and V, is defined by the wingman aircraft. If we introduce
the model

~ o |-ah o —al 010 0 0 -

AV, g | | AV,

A | | ZE —=— 01 0 0 0fap
! Ty Ty !

AD, 1 0 0; O 0 0| AD .
. = e e T ————" _——

AV, 0 0 0l-a, -ab o)AV,

. |

APy o 0 0! LA N

| AD, | | Ty T, AD,
|1 0 0! -1 0 0]

0 0 | - -
ko . U, -a%Aa, —a% A0,
Ty, 0

" 0 0 A0 o1 U
0 (? |89,02 | | -U,, —abAa, —aAG,
k pyo
0 02 0
Ty, U,,

|0 0 | B N

with the distance AD, as output, we will get two

interconnected systems. Let, for example, nitially V; =V,,
then AD, =const . If we change the thrust lever of the lead
aircraft, we change the speed of the aircraft; the equation
V, =V, is no longer valid and the distance AD =V, -V,

will be changed as well. If the goal is to keep the distance
AD, =const, the control of both aircrafts should be
performed in a coordinated way. Any time when the speed of
the lead aircraft is being changed, we have to change the
speed of the second aircraft.

Let us assume that 1) the aircrafts do not exchange the
information; 2) the distance AD, can be measured by the

wingman. Under these assumptions we may treat the problem
as the problem of the decentralized control (16). Here AV is
the increment of the speed with respect to the balance value
Vo (m/c); AP is the increment of the thrust with respect to the
balance value P, (n); U, =dU, /dt is the change of the wing
speed on the axis OX, U, is the wing speed on the axes OX;
Aca is the increment of the angle of attack to the balance



value; A® is the increment of the pitch angle; AJ,, is the
engine throttle; a? =g (free fall acceleration); af zi,
m

where m is the aircraft’s weight; k, takes into account the

change of engine throttle when the speed is been changed
(can be assumed = 0); the constant 7, of the engine depends

on the flight regime (Polyak et. al., 2002); kg"y” allows to take

into account the change of the engine throttle when changing
the thrust lever. We can assume for the simplicity that this
dependency is linear. Then, if thrust-to-weight ratio equal to
0,7, we get

Ko — Poax _ 0,7m
3 = = .
5py()max g 5py()max
Additional assumption is that the aircraft is highly
maneuvering.

The inputs of the system are unknown wing and other
uncontrolled dynamic disturbances. If the distance is
relatively small (10 — 50 m), then we may assume the same

wing U, =U,, for each aircraft. Otherwise we have to take
into account the order in which the aircrafts meet the blasts.
There are two control channels for the group flights:

e speed/ distance control using the engine throttle A9, ;
e altitude control using the elevator AJ, .

It is desirable to have the independent channels. The example
is the following control law:

AS, = k& o, +kgAS+ kL (H, - H),
H, and H is the targeted and current altitudes
(AH =(V +U,)sin® = (V +U,)A®).

This altitude control creates a disturbance in the speed control
channel which has to be compensated.

5. CONCLUSION

The Paper considers the problem of decentralized control with
an nominal model for interconnected system with unknown
parameters and an unknown order when derivatives of input
and output signals of the local subsystems cannot be
measured.

Considered robust control system allows compensating
parametric and external disturbances with given accuracy o
for the period of time 7. Values d and T can be small
enough using the appropriate parameters of the closed loop
system. It is necessary to note that the closed loop system is
functioning as an implicitly defined nominal model and
parameters of the model are used in control algorithm.
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