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Abstract A successive approximation method to calculate center manifolds is proposed. The
proposed algorithm consists of function sequences that uniformly converge to a center man-
ifold. The algorithm is more suitable for computer implementation than the standard Taylor
expansion method. The properties and applications of the method are discussed.

1 Introduction

Center manifolds play important roles in dynamical system theory. A center manifold appears when the linear
part of the differential equation describing the dynamical system has eigenvalues on the imaginary axis. In such
a case, one cannot conclude the stability of the system from the linear part and the stability of the system is
determined by that of the dynamics on the center manifold. Also, in bifurcation theory and singular pertur-
bation theory, center manifold theory is employed by augmenting describing equations with the perturbation
parameters as system states. In control theory, center manifold theory is important as well when designing a
feedback controller for asymptotically tracking a reference signal or rejecting undesired disturbances, called
the output regulation problem (see, e.g., [2],[3],[4]).

For calculation of center manifolds, however, the analytic method widely known is only by the Taylor
expansion. Two of the authors in the present paper proposed an analytic calculation method of center manifolds
for the output regulation problem, which is totally different from the Taylor expansion method[5]. The method
is created by defining successive function sequences that converge to the center manifold. In this paper, we
would like to re-introduce the algorithm and further examine its properties and potential applications for control
theory and dynamical system theory.

2 Successive approximation method of center manifolds

Let us consider the following set of differential equations
{

ẋ = Ax + f (x, y)
ẏ = By + g(x, y),

(1)

where (x, y)∈Rn×Rm.

Assumption 1 A is an n×n constant real matrix whose eigenvalues have zero real parts. B is an m×m constant
real matrix and its eigenvalues have negative real part.

From Assumption 1, it follows that for any constant a > 0, there exists a constant C1(a) > 0 such that
∣∣∣eAtx
∣∣∣ � C1(a)ea|t||x|, (∀t∈R, ∀x∈Rn).

Also, it follows that there exist constant b > 0 and C2 > 0 such that
∣∣∣e−Bty

∣∣∣ � C2ebt |y|, (0�∀t∈R, ∀y∈Rm).
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Assumption 2 f : Rn×Rm→Rn, g : Rn×Rm→Rm are Cr functions (r � 2) and for all |x|�ε, |x′|�ε, |y|�ε, |y′|�ε,
there exist continuous scalar functions K1(ε), K2(ε) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

| f (x, y)|�εK1(ε)

|g(x, y)|�εK2(ε)

| f (x, y) − f (x′, y′)|�K1(ε)(|x − x′| + |y − y′|)
|g(x, y) − g(x′, y′)|�K2(ε)(|x − x′| + |y − y′|)

where, f (0, 0) = 0, g(0, 0) = 0,
(∂ f
∂x (0, 0), ∂ f

∂y (0, 0)
)
= 0,
(∂g
∂x (0, 0), ∂g∂y (0, 0)

)
= 0, K1(0) = 0, K2(0) = 0.

We define a set of sequences {xk(t, ξ)}, {hk(ξ)}, (k=0, 1, 2, · · · ) by the following.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0(t, ξ) = eAtξ

h0(ξ) = 0

xk+1(t, ξ) = eAtξ +

∫ t

0
eA(t−s) f (xk(s, ξ), hk(xk(s, ξ)))ds

hk+1(ξ) =
∫ 0

−∞
e−Bsg(xk(s, ξ), hk(xk(s, ξ)))ds.

(2)

Theorem 3 Under Assumptions 1 and 2, system (1) possesses a local center manifold y = h(x) around the
origin and hk(x) in (2) converges to the local center manifold when k → ∞.

Example 2.1 Let us calculate the center manifold y = h(x) for the following system.
{

ẋ = −x3, x0 = x(0)
ẏ = −y + x2

Using Theorem 3, the algorithm is applied 12 times and we obtained

x(t, x0) = x0 − x0
3t +

3x0
5

2
t2 − 5x0

7

2
t3 +

35x0
9

8
t4

− 63x0
11

8
t5 +

231x0
13

16
t6

y = h(x0) = x0
2 + 2x0

4 + 8x0
6 + 48x0

8 + 384x0
10

+ 3840x0
12

The standard approach to calculate y = h(x) is based on the Taylor expansion, which can be applied setting
φ(x) =

∑∞
n=0 a2n+2 x2n+2 and calculate coefficients. In this case, we have a2n+2=2na2n, a2=1 and the same result

is confirmed.

Let us summarize the properties of the proposed algorithm based on Theorem 3.

• The integrals in (2) always exist.
• Unlike the Taylor expansion method, no equation needs to be solved.
• When nonlinearities f and g are polynomial, the integrations in (2) can be performed by the integration-

by-part, which means that all the calculations in the algorithm are algebraic. The resulting approximation
hk(x) is a polynomial function.
• With polynomial nonlinearities, the center manifold calculation can be done even with undetermined

parameters. Also, unlike the Taylor expansion method, unnecessary terms do not appear during the
process of calculation.

2



3 Application in aerospace engineering

In this section, we consider the attitude stabilization problem of a satellite with only two thrusters. This problem
is solved in [6, 7, 8] using center manifold theory. Here, we show that by the proposed method, it is possible
not necessarily to design a stabilizing controller but also trajectories in the phase space because exponentially
stable modes, corresponding the second equation in (1), rapidly converge to the center manifold.

The equations of motion for a satellite with control inputs aligned only with two principal axes are given as
follows.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω̇1 = I23ω2ω3
ω̇2 = I31ω3ω1 + c2u1
ω̇3 = I12ω1ω2 + c3u2

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I3 > I2 > I1 > 0
I23 = (I2 − I3)/I1
I31 = (I3 − I1)/I2
I12 = (I1 − I2)/I3
c2 = 1/I2, c3 = 1/I3

Choosing control inputs as
{

u1 =
1
c2

(−ω2 + p1ω
2
1 + p2ω

3
1)

u2 =
1
c3

(−ω3 + q1ω
2
1 + q2ω

3
1),

we have the colsed loop system as follows.
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω̇1 = I23ω2ω3
ω̇2 = −ω2 + I31ω3ω1 + p1ω

2
1 + p2ω

3
1

ω̇3 = −ω3 + I12ω1ω2 + q1ω
2
1 + q2ω

3
1

From this equation, ω2, ω3 exponentially converges to the center manifold ω2 = ϕ̃1(ω1), ω3 = ϕ̃2(ω1) and thus,
the stability of equilibrium (ω1, ω2, ω3) = (0, 0, 0) is determined by that of the dynamics on the center manifold
(see, e.g., [1]). Therefore, our task is now to choose the parameters p1, p2, q1, q2 so that the dynamics on the
stable manifold is asymptotically stable. By the 3rd order approximation of the center manifold, the condition
for the asymptotic stability is p1q1 = 0 and I23q1(I31q1 + p2) < 0 or I23 p1(I12 p1 + q2) < 0 ([7]). We obtain
higher order approximation by the proposed method, including undetermined control parameters p1, p2, q1 and
q2 satisfying the above condition. The parameters can be used to design trajectories of the closed loop system.
Figures 1, 2 show approximated center manifolds of 3rd and 10th order and the closed loop trajectories for
different values of the parameters.
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Figure 1: (p1, p2, q1, q2) = (0, 0.1, 0.1, 0.1)
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Figure 2: (p1, p2, q1, q2) = (0, 0.1,−1, 0.1)
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1997.
[4] J. Huang, Nonlinear Output Regulation, Theory and Applications, SIAM, 2004.
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