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Abstract
Recently a new family of graphs, namely the entan-

gled networks have been introduced which is shown to
exhibit better synchronizability. These networks have
extreme homogeneous structures, i.e. most of the nodes
are linked with similar number of links. Other network
topological parameters, such as betweenness centrality,
shortest path length etc. are shown to be distributed in
a relatively narrow interval. In this paper, we analyze
different network topological parameters for synchro-
nization optimized networks of coupled identical sys-
tems. The degree mixing patterns of these optimized
networks shows that the network is disassortative in na-
ture, i.e. the high degree nodes tend to connect with low
degree nodes.
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1 Introduction
Many complex systems can be considered as net-

works of interacting dynamical units. Depending on
the topologies, the complex networks can be catego-
rized as regular network, random network [Erdős, and
Rényi, 1960], small world network [Watts and Stro-
gatz, 1998], and scale free network [Barabási and Al-
bert, 1999]. The regular network has well define struc-
ture and the nodes are connected with some fixed rule
while in random networks two nodes are randomly con-
nected with some probability. The small world network
falls in between the regular network and the random
network. In a small world network, along with an un-
derlying regular structure, there exists few random con-
nections between the nodes. The scale free or power
law network is observed in many
The interacting dynamical systems are capable of ex-

hibiting many rich behaviors which a single isolated
unit can not show. List of these behaviors includes
synchronization [Pecora and Carroll, 1990], ampli-
tude death [Reddy, Sen and Johnston, 1998], chimera

state [Abrams and Strogatz, 2004], multistability [Kim,
Park and Ryu, 1997], phase flip [Prasad, Kurths, Dana,
and Ramaswamy, 2006], etc. Synchronization is a
fundamental nonlinear phenomenon which occurs be-
tween interacting dynamical systems when the inter-
acting dynamical systems adjust some given properties
of their trajectories to a common behavior due to cou-
pling. Recently, synchronization processes of locally
interacting dynamical systems has become the focus of
intense research in physical, biological, chemical, tech-
nological and social sciences []. The simplest and the
most studied form of the synchronization is the com-
plete synchronization (CS) which is observed in cou-
pled identical dynamical systems and their state vari-
ables become equal as they evolve with time.

In a recent paper, Barahona and Pecora [Barahona
and Pecora, 2002] showed that the small world net-
works can exhibit better synchronizability because of
existence of smaller path length between the nodes.
Later, Nishikawa et. al. [Nishikawa, Motter, Lai
and Hoppensteadt, 2003] observed that it is easier to
synchronize homogeneous networks. Donnetti et. al.
[Donnetti, Hurtado and Muñoz, 2005] introduces such
homogeneous networks as entangled networks.

In this paper we study distribution of different network
parameters, such as degree distribution, clustering, be-
tweenness, and shortest path in synchronization opti-
mized networks. We observed that the distribution in
the optimized network become narrow indicating that
the network has a homogeneous structure. The paper
is organized as following, in Section II we discuss the
master stability analysis of complete synchronization
and discuss the method of constructing synchroniza-
tion optimized networks from fixed. In Section III, we
present our numerical results on chaotic Rössler sys-
tems and we conclude in Section IV.



2 Synchronization of coupled dynamical systems
on networks

In this section we discuss the stability analysis of com-
plete synchronization of coupled identical dynamical
systems on networks by briefly discussing the Mas-
ter Stability Function formalism [Pecora and Carroll,
1998]. The Master Stability Function (MSF) is one of
the most important tools was introduced to simplify the
stability analysis of complete synchronization
One very important tool for studying stability of com-

plete synchronization of coupled identical dynamical
systems. In 1998, the MSF was introduced by Pec-
ora and Carroll for analyzing the stability of complete
synchronization for coupled identical systems [Pecora
and Carroll, 1998]. The MSF is defined as the largest
Lyapunov exponent, calculated from a set of equations
known as Master Stability Equation (MSE), as a func-
tion of coupling parameter. The negative MSF implies
stable complete synchronization. The MSF simplifies
the study of stability for complete synchronization by
separating the effect of the network structure from that
of the dynamics of individual system.
Let us consider a network of N coupled identical dy-

namical systems and the dynamics of the i-th systems
is give as

ẋi = f(xi)− ε
N∑
j=1

gijh(xj); i = 1, · · · , N (1)

where, xi ∈ Rm is the m - dimensional state variable
of the i - th system and ẋ = f(x) gives the dynamics of
an isolated system, ε and h are the coupling parameter
and the coupling function respectively. The coupling
matrix G = [gij ] is the Laplacian of the network and
its elements are given as gii = ki, where ki is the de-
gree of node i, when nodes i and j interact gij = −1,
and otherwise gij = 0. The coupling matrix satisfies
the condition

∑
j gij = 0, resulting the existence of

an eigenvector (1, . . . , 1)T corresponding to the eigen-
value γ1 = 0 of the coupling matrix G. As we are
interested in studying synchronization of the coupled
dynamical systems, we consider the network to be con-
nected. So, there exists only one zero eigenvalue of the
coupling matrix G. Let, the rest of the eigenvalues of
the coupling matrix G are 0 = γ1 < γ2 6 · · · 6 γN .
For suitable choice of coupling function h and cou-

pling parameter ε, the coupled systems of Eq. (1) will
synchronize to a state given by x1 = x2 = · · · = xN =
s(t), where s(t) is the solution of an isolated system
ṡ = f(s). The linear stability analysis of the syn-
chronization can be performed by expanding Eq. (1) in
Taylor’s series about the synchronized solution s and
diagonalizing these equations in N blocks which can
be written as

φ̇k = [Dxf(s)− εγkDxh(s)]φk; k = 1, · · ·N. (2)

where, Dx is the differential operator and γk is the k
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Figure 1. The eigen-ratio Q is plotted as a function of the Monte
Carlo steps (averaged over 100 runs).

- th eigenvalue of the coupling matrix. These diag-
onalized equations differs only in the parameter εγk.
Eq. (2) can be cast as the master stability equation by
introducing a complex parameter α = εγk and drop-
ping the index k

η̇ = [Dxf − αDxh]η (3)

The master stability function (MSF) λmax is the largest
Lyapunov exponent calculated from Eq. (3) as a func-
tion of α [Pecora and Carroll, 1998]. It has been ob-
served that for many dynamical systems the master sta-
bility function λmax is negative within a bounded in-
terval (α1, α2) [Barahona and Pecora, 2002]. The syn-
chronization of the coupled dynamical systems is sta-
ble when all the effective couplings lie within the in-
terval, α1 < εγ2 6 · · · 6 εγN < α2. The syn-
chronization is stable for a network only when the
eigenvalues of the coupling matrix satisfies the condi-
tion, γN/γ2 < α2/α1, where the quantity on the left
hand side comes from purely network structures and
the quantity on the right hand side depends on the sys-
tem dynamics f and coupling function h. The interval
of the stable synchronization increases for a network
when the ration Q = γN/γ2 decreases. The synchro-
nizability become maximum for a network when Q is
as minimum as possible.
Starting with a connected network of N nodes and E

links of arbitrary topology we rewire the links and use
Metropolis algorithm to obtain the optimized networks.
Let us consider that the coupling matrix of the initial
starting network is Ginitial and its eigenvalues are 0 =
γ1 < γ2 6 · · · 6 γN . The initial value of eigen-ratio
Qinitial is obtained by taking the ratio of maximum
eigenvalue with the minimum nonzero eigenvalue. We
delete an existing link of this initial network and create
a new link at a link vacancy. If the network become
disconnected we reject it. Otherwise we determine the



new value of Qfinal. We accept the final network, when
δQ = Qfinal − Qinitial is negative, otherwise we ac-
cept it with a probability e(−δQ)/T , where T is a tem-
perature like quantity. We start with high value of T
and reduce T after 100N iterations or 10N accepted
ones whichever occur first. The process is stopped
when there are no more changes in Q for successive
five temperature steps. At this we assume that a rea-
sonably good approximation of the optimal networks
has been achieved. In Fig. 1 the decrease in the eigen-
ratio Q is shown as function of Monte Carlo iterations.
The optimal networks achieved through this process is
classified as a new family of graphs in Ref. [Donnetti,
Hurtado and Muñoz, 2005], namely the entangled net-
works . These networks shows a very homogeneous
structure, the degree distribution, betweenness central-
ity and the shortest path all have very narrow distri-
bution. We briefly discuss these network parameters
below.

3 Numerical Results
In this section we discuss the numerical results on

chaotic Rössler systems. We consider a connected net-
work ofN = 64 chaotic Rössler systems with coupling
in x-component and total number of links E = 202.

3.1 Degree Distribution
The degree distribution P (k) of a given network gives

the probability that a randomly chosen node on the net-
work will have k degree. In Fig. 2 the degree distribu-
tion P (k) of the initial networks (dashed blue line) and
the same of the optimal networks are shown. The de-
gree distribution of the optimal network shows a sharp
peak and narrow band width than that of the initial ran-
dom network. The optimal networks show more ho-
mogeneous structure where most of the nodes are con-
nected to approximately same number of links.

3.2 Clustering coefficients
Clustering coefficients gives the probability that two

distinct immediate neighbors of a common node on a
given network are connected. Let us consider the de-
gree of a node i on a given network is ki and let G′

is the subgraph defined by the node i and its immedi-
ate ki neighbors. The maximum possible number of
links that can exist among the neighbors of the node i
is ki(ki − 1)/2. The clustering coefficient ci of node i
is defined as the ratio of actual number of existing links
ei to the maximum number of possible links among the
neighbors of node i

ci =
2ei

ki(ki − 1)
(4)

We define the distribution of the clustering coefficient
P (c) as the probability that a randomly chosen node
on a given network will have clustering coefficient c.
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Figure 2. The degree distribution of the initial network (dashed
blue line) and the optimal network (solid red line) is shown. For the
optimal network the degree distribution is more narrow.
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Figure 3. The distributions of the clustering coefficient are shown
for initial random network (blue dashed line) and the optimized net-
work (red solid line). There is an overall decrease in the clustering
coefficient of the optimized networks and the distribution become
narrower.

In Fig. 3 this distributions are shown for initial ran-
dom networks (blue dashed line) and the optimized net-
works (red solid line). We can find that the clustering
coefficients of most of the nodes in the optimized net-
works has become smaller than that of the initial ran-
dom networks and also the distribution is narrow.
Next, we study the behavior of the clustering coeffi-

cients of a network as a function of iterations, as we
approach the optimal topology. The clustering coef-
ficient C of a network is define as the average value
of the individual clustering coefficients of its nodes,
C = 1/N

∑N
i ci. In Fig. 4, we have shown the

changes in the clustering coefficient (C) of a network as
a function of iterations while leading towards the syn-
chronization optimized network. The clustering coeffi-
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Figure 4. The clustering coefficient C of a network is plotted as
a function of Monte - Carlo steps. The clustering coefficient reduces
and saturates to a lower value.

cient reduces and saturates to a lower value. Thus the
number of short loops in the synchronization optimized
networks decreases.

3.3 Average shortest path length
The shortest path length between a pair of nodes on a

network plays an important role in information trans-
fer and communication between the selected pair on
nodes. The shortest path length gives an optimal path-
way for fast transfer of information. Let, dij provides
the shortest path length between nodes i and j. We cal-
culate the average shortest path length of node i from
the other nodes in the network as

d̄i =
2

N(N − 1)

N∑
j,j 6=i

dij (5)

The distribution of the average shortest path P (d̄)
gives the probability that a randomly chosen nodes on
the network will have average shortest path length d̄.
In Fig. 5 the distributions are plotted for initial random
networks (blue dashed line) and the optimal networks
(red solid line). The optimized networks shows a sharp
peak in the distribution of average shortest path length
while the same distribution is flatter for initial random
networks.

3.4 Betweenness and closeness centrality
Betweenness centrality CB and closeness centrality
CC are two important network parameters. These pa-
rameters provides the important nodes which are re-
sponsible for intra-network information transfer.
In Fig. 6 and Fig. 7 we have plotted the distribution

of the betweenness centrality P (CB) and the close-
ness centrality P (CC) respectively. In both figures the
distributions for the initial network are shown as blue
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Figure 5. The distributions of the average shortest path length
P (d̄) of the initial random networks (blue dashed line) and the syn-
chronization optimized networks (red solid line) are shown.
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Figure 6. The distributions of betweenness centrality P (CB)
are shown for the initial network (blue dashed line) and the optimal
network (red solid line).

dashed lines and those for the optimal network are as
the red solid lines. The distributions for the initial net-
work are flatter than the distributions of the optimal net-
work. All nodes in the optimized networks have similar
betweenness centrality.

3.5 Degree mixing in networks
In this section we study degree mixing in net-

works [Newman 2002; Newman 2003]. Degree mix-
ing gives the tendency of nodes to be connected with
similar nodes in a given network. The measure of the
degree mixing in networks given by the correlation co-
efficients of the degrees at either ends of an edge. Let
the degrees of nodes at the ends of the ith edge in a
network is given by ji and ki, following Ref [Newman
2002] the degree mixing coefficient r can be calculated
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Figure 7. The distribution of closeness centrality P (CC) is
shown for initial random network (blue dashed line) and synchro-
nization optimized networks (red solid line).

as

r =
M−1

∑
i jiki − [M−1

∑
i

1
2 (ji + ki)]

2

M−1
∑
i

1
2 (j2

i + k2
i )− [M−1

∑
i

1
2 (ji + ki)]2

,

(6)
where, M is the total number of edges in the network.
When like degrees nodes of the networks are got con-
nected the correlation coefficient r is positive and the
network is called assortative network. The network is
called disassortative network when the coefficient r is
negative. This happen when high degree nodes tend to
connect with low degree nodes. For networks which
show no assortative mixing the correlation coefficient
r is zero. The random networks of Erdős and Rényi
and the scale free network model of Barabási and Al-
bert shows no assortative mixing. It has been observed
that many naturally evolving networks, such as Inter-
net, WWW, protein interaction, neural networks, etc.
shows disarrortative mixing of degree [Newman 2002].

In Fig. 8 this degree mixing correlation coefficient r
is shown as a function of Monte Carlo iterations. As
we start with an initial random network, the coefficient
r remains zero for few the initial iterations after that
it started decreasing and saturates to a negative value.
Thus, we conclude that the optimized networks are dis-
assortative in nature.

In some earlier paper [Bernardo, Garofalo, and Sor-
rentino, 2005; Sorrentino, Bernardo, and Garofalo,
2007] it has been observed that disassortative mixing
of degrees of nodes increases the synchronizability of
the network. Our finding supports this earlier obser-
vation. In Ref. [Chavez, Hwang, Martinerie, and Boc-
caletti, 2006], it has been observed that there exists an
threshold of the assortative coefficient r below which
the network loses its synchronizability.
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Figure 8. The degree mixing correlation coefficient r is shown
as a function of Monte Carlo iterations. As we start with an initial
random network, the assortative coefficient r remains zero for few
the initial iterations after that it started decreasing and saturates to a
negative value.

4 Conclusion
In conclusion we have studied synchronizability of

complex undirected network. The synchronization can
be enhanced by rewiring the links of a network. The
optimal network which shows better synchronizabil-
ity, is a very homogeneous network. The degree dis-
tribution, clustering coefficients, betweenness central-
ity, shortest path lengths of this optimal network are
distributed in a narrow range. The degree mixing cor-
relation coefficient of the optimal network is negative
which implies that in the optimal networks the nodes
with high degrees tend to connect with nodes with low
degree. Many naturally evolving networks also show
negative degree mixing correlation coefficient.
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Lett. 95, 188701 (2005).

M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002).
M. E. J. Newman, Phys. Rev. E 67, 026126 (2003).
M. Chavez, D.-U. Hwang, J. Martinerie, and S. Boc-

caletti, Phys. Rev. E 74, 066107 (2006).
M. di Bernardo, F. Garofalo, and F. Sorrentino,

arXiv:cond-mat/0506236 (2005).
F. Sorrentino, M. di Bernardo, and F. Garofalo, Int. J.

Bif. and Chaos 17, 2419 (2007).


	Introduction
	Synchronization of coupled dynamical systems on networks
	Numerical Results
	Degree Distribution
	Clustering coefficients
	Average shortest path length
	Betweenness and closeness centrality
	Degree mixing in networks

	Conclusion
	Acknowledgements

