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Abstract
Grünwald-Letnikov’s formulas yield approximations

to Marchaud’s derivatives, in the form of discrete con-
volutions of meshl, multiplied by l−α. A continu-
ous variant of that formulas is presented, with inte-
grals instead of series. It involves convolution ker-
nels which mimic essential properties of Grünwald-
Letnikov’s weights, but are more general.
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1 Introduction
A variety of mathematical objects denoted as deriva-

tives, and qualified by the word “fractional”, were built
in view of heterogeneous motivations. The subse-
quent confusion, which contrasts with what occured
for derivatives of integer order, helped not making frac-
tional calculus becoming popular. Yet, the many faces
of the notion cannot be avoided, in so far as fractional
derivatives have to interpolate between previously in-
stalled integer orders. Indeed, infinitely many paths
join a given discrete set of points, except if we impose
constraints which we have to choose carefully in order
to prevent ill-posed problems.
Frequently used definitions [Samko, Kilbas and

Marichev, 1993] [Rubin, 1996] [ Kilbas, Srivastava and
Trujillo, 2006] yield fractional derivatives, inverting
fractional integrals, but even this point can take dif-
ferent forms. Here we focus on mappings inverting
(at the left) fractional integrals, involving integrations
over semi-infinite intervals, and we restrict to the one-
dimensional case. Left inverses to such mappings can
be given by explicit formulas, such as Riemann’s and
Liouville’s, combining fractional integration and usual
derivatives. Marchaud’s method is more general, com-
bines convolution and finite differences. It coincides
with Riemann-Liouville’s formulas for a broad class of

functions, and also with Grünwald-Letnikov’s defini-
tion, which is at the basis of numerical approximations
to fractional derivatives.
We will show that the corresponding mappings also

coincide with the limit, whenl tends to zero, of

l−α

∫ +∞

0

f(x ± ly)F (y)dy. (1)

This point was proved in [Néel, Abdennadher and Joel-
son, 2007], for values ofα belonging to a finite interval.
Here we show that it holds for all positive values of the
exponent.
After having stated conditions to be satisfied byF in

order to ensure that the limit of (1) whenl tends to zero
is a fractional derivative of the order ofα, we will prove
the claim. Then, we will discuss an application.

2 A new setting for Fractional derivatives
Among the many mappings interpolating between

derivatives of integer orders, Riemann-Liouville’s and
Marchaud’s derivatives are intimately bound to frac-
tional integrals over semi-infinite intervals, for which
they play the role of left inverse mappings, in a definite
setting. We will see that fractional derivatives also are
limits of a broad set of convolutions.

2.1 Riemann-Liouville’s and Marchaud’s deriva-
tives

Forα being a positive real number, the left and right-
sided fractional integrals of the order ofα of functionf
are [Samko, Kilbas and Marichev, 1993] [Rubin, 1996]
[ Kilbas, Srivastava and Trujillo, 2006]

Iα
±f(x) =

1

Γ(α)

∫
I±

(x − y)α−1f(y)dy, (2)

with I+ =] −∞, x] andI− = [x,∞[.



Riemann Liouville’s left and right-sided derivatives of
the order ofα are

Dα
±f(x) =

1

Γ(n − α)
(±

d

dx
)n

∫
I±

f(y)

(x − y)α−n+1
dy,

(3)
with n = [α] + 1, providedα is not an integer. If
functionϕ is locally integrable overR, provided also
integralsI

[α]+1
± ϕ converge absolutely [Rubin, 1996],

(Dα
±Iα

±ϕ)(x) andϕ(x) are equal almost everywhere.
Hence,Dα

± is a left inverse toIα
± when the above con-

ditions forϕ are met.
For 0 < α < 1, whenf is derivable with d

dx
f(x)

tending to 0 at infinity as |x|
α−1−ǫ with ǫ > 0,

[Samko, Kilbas and Marichev, 1993]Dα
+f(x) is equal

to− 1
Γ(−α)

∫ ∞

0
(f(x)− f(x+ y))y−α−1dy. More gen-

erally, forα > 0, provided functionf isn times contin-
uously derivable, we can define Marchaud’s derivatives
according to

Dα
±f(x) =

−1

Γ(−α)An(α)

∫ +∞

0

(∆n
±tf)(x)

tα+1
dt (4)

with n an integer satisfying0 < α < n, andAn(α) =
Σn

k=1(−1)k−1(n
k )kα. Finite differences of the order of

n, with mesht, are defined by∆n
t = (∆1

t )
n

and∆1
t =

f(x)−f(x−t). Marchaud’s method extends to a larger
set of functions if we take forDα

±f(x) the limit, when
ǫ tends to0, of Dα

±,ǫf(x), itself defined according to

Dα
±,ǫf(x) =

−1

Γ(−α)An(α)

∫ +∞

ǫ

(∆n
±tf)(x)

tα+1
dt. (5)

The limit can be understood in the sense ofLp or of
uniform continuity, andDα

± is a left inverse toIα
±, ac-

cording to the following remark. But we have to take
care that the integralsIα

±ϕ of an element ofL±
p = {ϕ ∈

Lp
loc(R), ϕ ∈ Lp(R±)} may not exist forα > 1.
Remark 1: The Theorem 10.21 of [Rubin, 1996]

states that, for functionf such thatf = Iα
±ϕ where the

integral exists (as a Lebesgue integral or as an improper
one), the limit ofDα

±,ǫf(x) yields functionϕ(x) ac-
cording to what follows for1 ≤ p ≤ +∞. If ϕ belongs
to L−

p with f = Iα
+ϕ, thenDα

+,ǫf(x) tends toϕ(x) in
Lp] − ∞, a[ for any reala, and also pointwise almost
everywhere. Forϕ in L+

p with f = Iα
−ϕ, Dα

−,ǫf(x)
tends toϕ(x) in Lp]a, +∞[ for any reala, also point-
wise a. e. Iff = Iα

+ϕ or f = Iα
−ϕ holds whileϕ

belongs toLp(R), thenDα
±,ǫf(x) tends toϕ(x) in Lp

and pointwise a.e. inR. For ϕ in C(R) and tending
to zero at−∞, the limit of Dα

+,ǫf(x) is uniform on
any ] − ∞, a[. If ϕ tends to zero at+∞, the limit

of Dα
−,ǫf(x) is uniform on any]a, +∞[. Hence, the

Theorem 10.21 of [Rubin, 1996] allows us to compute
ϕ = Dα

±f , providedϕ belongs toL±
p , if also integral

f = Iα
±ϕ exists.

Remark 2: IntegralsIα
±ϕ(x) exist for all functionsϕ

in L±
p if p belongs to]0, 1/α[, but they may not exist

for someϕ in L±
p if p is larger than1/α, a fortiori if α

is larger than1.
Marchaud’s derivative coincides withDα

±f(x) when
f is n times continuously derivable and falls off rapidly
enough at infinity, or whenf is the Iα

± image of
some integrable functionϕ, with, moreover,Iα

±ϕ abso-
lutely converging. While Riemann-Liouville’s defini-
tion needs functions, tending to zero rapidly at infinity,
Marchaud’s method gives the left inverse toIα

± in Lp

spaces.

2.2 Grünwald-Letnikov’s formulas
Grünwald-Letnikov’s method yields approximations

to the inverse of a fractional integral. For non inte-
ger values ofα, it is based upon fractional finite differ-
ences∆α

±l, defined according to [Samko, Kilbas and
Marichev, 1993]

∆α
l f(x) =

Σ∞
k=0(−1)k(α

k )f(x − kl) = Σ∞
k=0w

α
k f(x − kl). (6)

The limit when l tends to zero, ofl−α∆α
±lf(x), is

called a Grünwald-Letnikov’s derivative. It also yields
a left inverse toIα

±, hence it coincides with Marchaud’s
derivativeDα

±f(x) whenf is of the form ofIα
±ϕ with

ϕ in L±
p , due to Theorem A of [Samko, 1992]. The re-

sult was retrieved in [ Meerschaert and Scheffler, 2002]
with the help of Lévy representation formulas for in-
finitely divisible probability laws. Efficient numerical
schemes are based upon Grünwald-Letnikov’s approx-
imationl−α∆α

±lf(x) to Dα
±f(x) .

The (α
k ) = Γ(α+1)

Γ(k+1)Γ(α−k+1) in (6) behave ask−α−1

whenk is large, providedα is not an integer [ Gorenflo
and Mainardi, 1999]. Moreover,Σ∞

k=0(−1)k(α
k ) = 0

holds forα > 0, and impliesΣ∞
k=0(−1)k(α

k )kr = 0
whenr is an integer satisfying0 ≤ r < α. We will see
that convolutions, with integrals instead of series, com-
bined with dilatations and contractions of dependent
and independent variables (akin to the multiplication
of k by l in the argument off(x− kl) in (6), combined
with the factorl−α in front of the series), also provide
approximations to the inverse of a fractional integrals.

2.3 A new approach to the left inverse of a frac-
tional integrals

In (6), weightswα
k = (−1)k(α

k ) match the discrete
variant of asymptotic behaviour and oscillation de-
scribed by the following hypotheses.



HypothesisH1(α): functionF satisfiesH1(α) if, for
any integerr such that0 ≤ r < α, yrF (y) is integrable
in R and satisfies

∫ +∞

0 F (y)yrdy = 0.
HypothesisH2(α): functionF satisfiesH2(α) if F

is of the formF (y) = F1(y) + Cy−α−1 in a neigh-
bourhood of+∞, with F1(y)yα being integrable near
+∞.
Whenα is an integer, we use the following stronger

version.
Hypothesis H ′2(α): function F satisfiesH ′2(α) if

F (y)yα is integrable near+∞.
We claim that combining appropriate dilatations of

independent and dependent variables and convolution
whose kernel satisfiesH1(α) and H2(α) yields ap-
proximations to the inverse of the fractional integral
Iα
−, according to the following theorem.
Theorem : Let α be a positive real number, and let

function F satisfyH1(α). Then, points(i)-(iii) hold
if α is not an integer whileF satisfiesH2(α). They
also hold whenα is an integer, providedF satisfies the
stronger assumptionH ′2(α) instead ofH2(α).
(i) Forf = Iα

−ϕ with ϕ in L+
p andp ≥ 1, the limit of

l−α
∫ ∞

0
Iα
−ϕ(x + ly)F (y)dy exists inL+

p and is equal
to a constantΛ, times ϕ, in L+

p and also pointwise
whereϕ is right-continuous.
(ii) For f = Iα

+ϕ with ϕ in L−
p and p ≥ 1, the

limit of l−α
∫ ∞

0
Iα
+ϕ(x − ly)F (y)dy exists inL−

p and
is equal toΛϕ, in L−

p and also pointwise whereϕ is
left-continuous.
(iii) The constantΛ in (i) and (ii) is equal to∫ ∞

0
Iα
+(HF )(y)dy, with H representing Heaviside’s

function. Hence it does not depend onp. Suppose now
thatα is not an integer. IfF (y) is equal toy−α−1 in a
neighbourhood of+∞, we haveΛ = Γ(−α). If F (y)
is equal toy−α−1−εB(y) in a neighbourhood of+∞,
with ε > 0 while B is bounded, we haveΛ = 0.
Remark 3: l−α−1

∫ ∞

0
f(. + y)F (y

l
)dy is equal to

l−α
∫ ∞

0 f(. + ly)F (y)dy.
Remark 4: Due to the Theorem 10.21 of [Rubin,

1996], recalled in Remark 1, we haveϕ(x) = Dα
±f(x)

in L∓
p for f = Iα

∓ϕ in ϕ in L±
p . For suchf , the

present theorem states that the limit ofl−α
∫ ∞

0 f(x +
ly)F (y)dy exists and is equal, inL±

p , to Marchaud’s
derivativeDα

±f(x).
The limiting caseα = 0 is not included in the above

claim, and the definition (2) ofIα
± does not make sense

for this value of the exponent. Nevertheless, it is not
difficult to see that a similar ansatz then holds.

3 Proof of the Theorem
Non-integer values ofα will be considered first.

3.1 Proof of the Theorem, forα not an integer
Proving (i) will be enough for(i) and (ii), and will

be achieved by checking thatϕ equals the limit of
l−α

∫ ∞

0
f(. + ly)F (y)dy under hypothesesH1(α)-

H2(α). Settingy = x + ls in

∫ ∞

0

(Iα
−ϕ)(x + lt)F (t)dt =

1

Γ(α)

∫ +∞

0

F (t)

∫ +∞

x+lt

ϕ(y)(y − x − lt)α−1dydt,

the latter expression yields

l−α

∫ ∞

0

f(x + lt)F (t)dt =

1

Γ(α)

∫ +∞

0

F (t)

∫ +∞

t

ϕ(x + ls)(s − t)α−1dsdt.

Fubini’s Theorem then implies

l−α

∫ ∞

0

(Iα
−ϕ)(x + lt)F (t)dt =

1

Γ(α)

∫ +∞

0

ϕ(x + ls)

∫ s

0

F (T )(s − t)α−1dtds (7)

a.e. inR if Iα
+(HF )(s) = 1

Γ(α)

∫ s

0
F (T )(s−T )α−1dT

is in L1(R+). Indeed, due to Young’s inequality, the
latter implies that

∫ +∞

0 |ϕ(x + ls)||Iα
+(HF )(s)|ds be-

longs to Lp(R), hence is finite a.e. inR. More-
over, the convolution

∫ +∞

0 ϕ(x + ls)Iα
+(HF )(s)ds is∫ ∞

0 Iα
+(HF )(s)ds times an approximation to Identity,

due to Theorem 1.3 of [Samko, Kilbas and Marichev,
1993] which states that the right hand-side of (7) con-
verges to

∫ ∞

0 Iα
+(HF )(s)ds × ϕ(x) in Lp. The con-

vergence is, moreover, pointwise whereϕ is right-
continuous. Hence points(i) and (ii) of the Theorem
will be a consequence of the following Lemma.
Lemma 1: If F satisfiesH1(α) andH2(α) with α

not an integer,Iα
+(HF ) is integrable overR+.

Lemma 4.12 of [Rubin, 1996] (pointii) implies
Lemma 1 whenF (x)xα is integrable, withα possibly
being an integer. Hence, it suffices to prove Lemma 1
for functionsF satisfying the hypotheses of Lemma 2
below, while for point(iii) we have to computeΛ when
F behaves as a power of the argument near+∞.
To this end, takeϕ(x) = (1 − x)m−α for 0 ≤ x < 1

andϕ(x) = 0 elsewhere, withm an integer satisfying
0 ≤ m < α < m+1. Functionϕ belongs toLp(R) for
p(α − m) < 1, andf(x) = Iα

−ϕ(x) satisfiesf(x) = 0

for x > 1, f(x) = 1
Γ(α)

∫ 1

x
(1− t)m−α(t−x)α−1dt for

x in [0, 1[ andf(x) = 1
Γ(α)

∫ 1

0
(1− t)m−α(t−x)α−1dt



for x < 0, where integrals converge absolutely. In
view of Remark 1 we haveϕ(x) = Dα

−f(x) in Lp(R)
and also pointwise almost everywhere. SinceIα

−ϕ(x)

is equal toIα
1,−((1− t)m−α)(x) = Γ(m+1−α)

Γ(m+1) (1−x)m

for 0 ≤ x < 1 [ Kilbas, Srivastava and Trujillo, 2006],
functionf satisfiesf(x) = 0 for x > 1 andf(x) =
Γ(m+1−α)

Γ(m+1) (1 − x)m for 0 ≤ x < 1. Due to point(i),

the limit of J(α, l, x) ≡ l−α
∫ +∞

0
f(x + ly)F (y)dy is

Λϕ(x) in L+
p , and pointwise whereϕ is right continu-

ous, hence in any interval included in]0, 1[.
To compute the pointwise limit forx in ]0, 1[, we

use H1(α) which implies Γ(m+1)
Γ(m+1−α)J(α, l, x) =

−l−α−1
∫ +∞

1−x
(1 − x − Y )mF (Y/l)dY with ly = Y .

The latter expression is equal to−
∫ +∞

1−x
(1 − x −

Y )mY −α−1dY providedF (y) = y−α−1 holds near
infinity, when l is small enough. From this we obtain

Γ(m+1)
Γ(m+1−α)J(α, l, x) = −(1 − x)m−α(−1)m

∫ 1

0 (1 −

T )mT α−m−1dT , where we recognize a Bernoulli Beta
function [Abramowitz and I. Stegun, 1965], and we de-
duce

J(α, l, x) = Γ(−α)(1 − x)m−α

whenl is small. Hence we haveΛ = Γ(−α) if F (y)
is equal toy−α−1 near infinity, in agreement with par-
tial results presented in [Néel, Abdennadher and Joel-
son, 2007]. If, instead,F (y) is equal toB(y)y−α−1−ε

there, we have Γ(m+1)
Γ(m+1−α)J(α, l, x) = l−ε

∫ +∞

1−x
(1 −

x − Y )mY −α−1−εB(Y/l)dY , which tends to zero
whenl does.
Hence point(iii) is proved. It remains to prove Lemma

1 for F (x) being proportional tox−α−1 near infinity.

3.2 Proof of Lemma 1
It is enough to prove the following lemma.
Lemma 2 : For0 ≤ m < α < m + 1, with m in N ,

g∗1(x) = x−α−1χ[A,+∞[ andg∗2(x) = Σm
i=0biχ[i,i+1[,

the fractional integralIα
+(Hg∗) of g∗ = g∗1 − g∗2 is

integrable inR+ if and only if g∗ satisfies

∫ +∞

0

yng∗(y)dy = 0, n = 0...m. (8)

Proof of Lemma 2 : Sinceg∗ is locally integrable,
it suffices to check whetherIα

+(Hg∗) is integrable in a
neighbourhood of+∞.
First, notice that (8) is equivalent to

Σm
i=0bi

(i+1)r+1−ir+1

r+1 = A−α+r

α−r
for r = 0, ..., m.

Moreover, forx > A, in

Γ(α)Iα
+(Hg∗)(x) =

∫ x

A

(x−y)α−1y−α−1dy−Σm
i=0biΓ(α)Iα

+χ[i,i+1[, (9)

the Γ(α)Iα
+χ[i,i+1[(x) expand as

xα

α
[Σm+1

k=1
(α)...(α+1−k)

k!xk (−1)k(ik − (i + 1)k) +
Bi(x)x−m−2], with theBi being bounded, so that the
xαBi(x)x−m−2 are integrable near+∞.
SettingG(X) =

∫ X

0 [(1 − t)α−1 − (1+

Σm
k=1

(−1)k

k!
(α − 1)...(α − k)tk)]t−α−1dt (10)

allows us to write the first integral on the right hand-
side of (9) as

∫ x

A

(x − y)α−1y−α−1dy = x−1[G(1)

−
1

α
[1 + Σm

k=1

(−1)k

k!
α...(α − k + 1)]] + x−1[

−G(A/x)+
1

α
[(

x

A
)α+Σm

k=1

(−1)k

k!
α...(α−k+1)(

x

A
)α−k]].

Since G(A/x) is the integral of a continuous func-
tion dominated by|α...(α−m−1)|

(m+1)! tm+1−α, x−1G(A/x)

is integrable in a neighbourhood of+∞.
Now, we will see that G(1) − 1

α
[1 +

Σm
k=1

(−1)k

k! (α)...(α − k + 1)] is equal to zero.
Indeed, setting

g(p, q) =

∫ 1

0

((1 − t)q−1−

[1 + Σm
k=1

(−t)k

k!
(q − 1)...(q − k)])tp−1dt, (11)

we haveG(1) = g(−α, α), while, on the right hand-
side of (11), we recognize the Bernoulli beta func-
tion ([Abramowitz and I. Stegun, 1965]B(p, q), equal
to Γ(p)Γ(q)

Γ(p+q) for complex valuedp and q satisfying
Re(p) > 0 andRe(q) > 0. For such(p, q), we have

g(p, q) = B(p, q)− 1
p
−Σm

k=1
(−1)k

k!(p+k) (q−1)...(q−k).
With q being fixed, equal toα, this equality extends
to complex valuedp which are not negative integers
and satisfyRe(p) ≥ p0 > −m − 1. Indeed, the right
hand-sideΓ(p)Γ(q)

Γ(p+q) − [ 1
p

+ Σm
k=1(−1)k (q−1)...(q−k)

k!(p+q) ] is
analytic forRe(p) ≥ p0 > −m − 1, except at poles
0,−1, ...,−m of Γ. The left hand-sideg(p, q) is also
analytic in{p ∈ C/Re(p) ≥ p0}, due to dominated
convergence theorem. Hence, analytic continuation in
Rep ≥ p0 − {0, ...,−m} yields

g(p, q)+
1

p
+ Σm

k=1(−1)k (q − 1)...(q − k)

k!(p + k)
= B(p, q)



for p = −α. This proves G(1) − 1
α
[1 +

Σm
k=1

(−1)k

k! α...(α − k)] = 0, due toB(−α, α) = 0.
Now,

Γ(α)Iα
+(Hg∗2)(x) −

xα

α
[
A−α

x
+

Σm+1
k=2 x−k(−1)k+1 α...(α − k + 2)

(k − 1)!
A−α−1+k]

is xα−m−1 times a polynomial, plus a function, inte-
grable near+∞. The polynomial is identically zero if
and only if (8) holds. Hence Lemma 2 is proved.
For integer values ofα the hypotheses of Lemma 2

and Theorem 1 have to be strenghted, excluding kernels
F proportional tox−α−1 near∞.

3.3 Integer values ofα
Let nowα be a positive integer. WhenF (x)xα is in-

tegrable, the lemma 4.12 of [Rubin, 1996] implies the
theorem.
It does not extend to kernelsF decresasing ex-

actly as x−α−1 at +∞. Indeed, with the nota-
tions of Lemma 2,Γ(α)Iα

+(Hg∗2)(x) is now a poly-
nomial. Forx > A, Γ(α)Iα

+(Hg∗1)(x) is equal to

Σα−1
k=0xk(α−1

k ) (−1)α−k

k+1 (x−1−k −A−1−k), which splits

into the sum of1
x
Σα−1

k=0 (α−1
k ) (−1)α−k

k+1 , plus a polyno-

mial. The coefficient of1
x

is −1
α

Σα
k′=1(

α
k′)(−1)α−k′

=
1
α

. Therefore, it is even not possible to find coefficients
bi such thatIα

+(Hg∗) be integrable near+∞.

4 Application to random walks
For values ofα between0 and1, formula (1) applies

to random walks, whose successive independent jumps,
identically distributed, have tail distributions satisfying
H2(α). The corresponding jump length distributions
belong to the domain of stable attraction ofα + 1 sta-
ble laws [Feller, 1970]. We will see that then, the flux
of walkers splits into expressions, very similar to (1),
and that the diffusive limit is a linear combination of
derivatives of the order ofα.

4.1 The flux of walkers
Here we assume that jumps are distributed accord-

ing to lX , where the random variableX has density
ϕ, equivalent tox−2−α near infinity, while, moreover,
pausing times have finite expectationτ . Parameterl is
a length scale.
Then, with G+(x) representing the tail distri-

bution
∫ +∞

x
ϕ(y)dy, the probability rate of a

tagged walker to cross locationx to the right
is τ−1

∫ +∞

0
f(x − y)G+(y/l)dy, equal to

Kl−α−1
∫ +∞

0
f(x − y)G+(y/l)dy if τ and l sat-

isfy the scaling law lα+1 = Kτ . Hence the flux is

the balanceKl−α−1[
∫ +∞

0 f(x − y)G+(y/l)dy −∫ +∞

0 f(x + y)G−(y/l)dy] with G− being the tail

distributionG−(x) =
∫ −x

−∞
ϕ(y)dy, if f represents the

density of walkers. In view of Remark 3, the flux is
equal toKl−α[

∫ +∞

0
f(x− ly)G+(y)dy−

∫ +∞

0
f(x+

ly)G−(y)dy].
Of course kernelsG± satisfyH2(α) but notH1(α).

Nevertheless, we can modify theG± so thatH1(α) be
satisfied without changing the flux, provided we check
that

∫ +∞

0

G+(y)dy =

∫ +∞

0

G−(y)dy = I (12)

holds. Indeed, substracting from theG± a compactly
supported function whose integral isI yields kernels
satisfying the hypotheses of our theorem.
Then, lettingl tend to zero yields that the diffusive

limit of the flux is a fractional derivative of the order
of α: this was proved by [Néel, Abdennadher and Joel-
son, 2007] in a slightly restricted context, thus retriev-
ing a result obtained by [Paradisi, Cesari, Mainardi, and
Tampieri, 2001] from space-fractional diffusion equa-
tions.

4.2 Proof of (12)
To prove (12), notice that the difference∫ +∞

0 (G+(y) − G−(y))dy is also the integral,
over [0, +∞[ of the cumulated tail difference
D(x) =

∫ +∞

x
(ϕ(y) − ϕ(−y))dy. According to [

Bingham, Goldie and Teugels, 1987],
∫ +∞

0
D(x)dx

is the limit whenk tends to0, of V (k)
k

, with V (k)
representing the imaginary part of the characteristic
functionΦ(k) of ϕ, hence the following remark holds.
Remark 5: All densities whose characteristic func-

tion has imaginary partV (k) equivalent tok1+ε with
ε > 0 for k near0 are such that

∫ +∞

0 D(x)dx = 0.
It remains to check thatV (k) behaves ask1+ε near

0. To this end, we use the Theorem 8 of [ Pitman,
1968]. It states that densities such asϕ whose cu-
mulated tail differenceD is integrable satisfyV (k) =

k
∫ +∞

0 D(x)dx+V1(k) with V1(k) equivalent to a con-
stant timesD(1/k) whenk is small, providedD is reg-
ularly varying [ Bingham, Goldie and Teugels, 1987]
of type−m near infinity, withm strictly between1 and
3. Continuous densities behaving asx−α−1 are in this
case, and the following remark holds, which achieves
proving (12).
Remark 6: For functionsG± which are tail inte-

grals of probability laws whose density is proportional
to x−α−2 near infinity, integrals

∫ +∞

0
G+(y)dy and∫ +∞

0 G−(y)dy are equal.

5 Conclusion
Formula (1), which can be used for all positive values

of the orderα of the derivation, generalizes Grünwald-



Letnikov’s, with integrals instead of series. It com-
bines convolution, contraction (multiplication byl) or
dilatation (multiplication by1/l) of the argument of
one among the two involved functions, and dilatation
(multiplication byl−α) of the issue. Then, the limit “l
tending to zero” yields a fractional derivative, accord-
ing to our theorem. In order to satisfyH1(α), the ker-
nel F has to oscillate such that all moments of integer
order smaller thanα be equal to zero. Except whenα
is an integer,α + 1 represents the first power ofx−1

in the expansion, near infinity, of the kernel. Some im-
provements should now allow us to extend our theorem
to complex orders and, more importantly, it remains to
generalize to higher dimensions.

For α between0 and1, our theorem helps computing
the flux of particles performing random walks. Here,
we discussed this point for random walks in infinite
domains. In fact, it adapts to cases with boundaries,
sources and sinks, as sketched in [Néel, Abdennadher
and Joelson, 2007].
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