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Abstract functions, and also with Griinwald-Letnikov’s defini-

Griinwald-Letnikov’s formulas yield approximations tion, which is at the basis of numerical approximations
to Marchaud’s derivatives, in the form of discrete con- to fractional derivatives.
volutions of mesh, multiplied by /~“. A continu- We will show that the corresponding mappings also
ous variant of that formulas is presented, with inte- coincide with the limit, wher tends to zero, of

grals instead of series. It involves convolution ker-

nels which mimic essential properties of Grinwald- 400
Letnikov’s weights, but are more general. =« / flx £1ly)F(y)dy. Q)
0

Key words This point was proved in [Néel, Abdennadher and Joel-

Integro-differential equations, Fractional derivatives son, 2007], for values af belonging to afinite interval.
Random walks, Transport processes Here we show that it holds for all positive values of the

exponent.
After having stated conditions to be satisfied Byn

1 Introduction order to ensure that the limit of (1) whétends to zero

A variety of mathematical objects denoted as deriva- is a fractional derivative of the order af we will prove
tives, and qualified by the word “fractional”, were built  the claim. Then, we will discuss an application.

in view of heterogeneous motivations. The subse-

quent confusion, which contrasts with what occured _ ) o

for derivatives of integer order, helped not making frac- 2 A neéw setting for Fractional derivatives

tional calculus becoming popular. Yet, the many faces Among the many mappings interpolating between
of the notion cannot be avoided, in so far as fractional derivatives of integer orders, Riemann-Liouville'’s and
derivatives have to interpolate between previously in- Marchaud's derivatives are intimately bound to frac-
stalled integer orders. Indeed, infinitely many paths tional integrals over sem|-|nf|n|te mte_rvals,_ for Wh_|c_h
join a given discrete set of points, except if we impose they play the role of left inverse mappings, in a definite
constraints which we have to choose carefully in order setting. We will see that fractional derivatives also are
to prevent ill-posed problems. limits of a broad set of convolutions.

Frequently used definitions [Samko, Kilbas and

Marichev, 1993] [Rubin, 1996] [ Kilbas, Srivastavaand 2.1 Riemann-Liouville’s and Marchaud’s deriva-
Trujillo, 2006] yield fractional derivatives, inverting tives

fractional integrals, but even this point can take dif- For« being a positive real number, the left and right-
ferent forms. Here we focus on mappings inverting sided fractional integrals of the order@bf function f

(at the left) fractional integrals, involving integrat®n  are [Samko, Kilbas and Marichev, 1993] [Rubin, 1996]
over semi-infinite intervals, and we restrict to the one- [ Kilbas, Srivastava and Trujillo, 2006]

dimensional case. Left inverses to such mappings can

be given by explicit formulas, such as Riemann’s and 1

Liouville’s, combining fractional integration and usual IS f(x) = —/ (z—y)* ' fy)dy, (2)

I ) . I(a) J;

derivatives. Marchaud’s method is more general, com- +

bines convolution and finite differences. It coincides

with Riemann-Liouville’s formulas for a broad class of with I, =] — oo, z] andI_ = [z, oo].



Riemann Liouville’s left and right-sided derivatives of
the order ofx are

fly)

1 d
(z —y)ortt .

L16) = ey )" L
@

with n = [a] + 1, provideda is not an integer. If
function ¢ is locally integrable over?, provided also
integralslf]“@ converge absolutely [Rubin, 1996],
(DY I1%9)(x) andp(z) are equal almost everywhere.
Hence D¢ is a left inverse td'§ when the above con-
ditions fory are met.

For0 < a < 1, whenf is derivable with-% f(z)
tending to0 at infinity as |z|*~ '~ with e > 0,
[Samko, Kilbas and Marichev, 1993]¢ f(x) is equal
0 — oy Jo~ (f(z) = fz +y))y~*~"dy. More gen-
erally, forae > 0, provided functiory isn times contin-

of D* _f(x) is uniform on anyja, +oo[. Hence, the
Theorem 10.21 of [Rubin, 1996] allows us to compute
¢ = D% f, providedy belongs toL;,t, if also integral
f =13y exists.

Remark 2: IntegralsI¢ () exist for all functionsy
in Lg if p belongs t00, 1/«[, but they may not exist
for somey in sz)[ if pis larger thanl /«, a fortiori if «
is larger tharl.

Marchaud’s derivative coincides with¢ f(z) when
f isn times continuously derivable and falls off rapidly
enough at infinity, or whenf is the I$ image of
some integrable functiop, with, moreover/$ ¢ abso-
lutely converging. While Riemann-Liouville’s defini-
tion needs functions, tending to zero rapidly at infinity,
Marchaud’'s method gives the left inverseltp in L?
spaces.

2.2 Grunwald-Letnikov’s formulas

uously derivable, we can define Marchaud’s derivatives Grunwald-Letnikov’'s method yields approximations

according to

o +oo n T
e C

(=) A, (a) port b (4)

with n an integer satisfying < a < n, and4,,(«) =
$P_ (=1)F=L(m)ke. Finite differences of the order of
n, with mesht, are defined bA? = (A})™ andA} =

f(z)— f(z—t). Marchaud’s method extends to a larger

set of functions if we take foD¢ f(z) the limit, when
e tends td), of D¢ _ f(z), itself defined according to

§ef(x) =

L[ AR,
. (5)

T(—)A,(a) fot1

The limit can be understood in the senseldfor of
uniform continuity, andD§ is a left inverse td'¢, ac-

cording to the following remark. But we have to take

care thatthe integral§ ¢ of an element oLff ={p¢€
LY (R),¢ € LP(R*)} may not exist forx > 1.

Remark 1: The Theorem 10.21 of [Rubin, 1996]
states that, for functioyi such thatf = I$ ¢ where the

integral exists (as a Lebesgue integral or as an imprope

one), the limit of D¢ _f(x) yields functiony(z) ac-
cording to what follows fol. < p < +o0. If ¢ belongs
to L, with f = I¢¢, thenD¢ _f(x) tends top(x) in
LP] — o0, a[ for any reala, and also pointwise almost
everywhere. Forp in L} with f = I%p, D* _f(x)
tends top(x) in LP]a, +oo[ for any reala, also point-
wise a. e. Iff = I{p or f = I%p holds whiley
belongs toL?(R), thenD§ _ f(x) tends top(z) in LP
and pointwise a.e. iR. For¢ in C(R) and tending
to zero at—oo, the limit of D¢ _f(x) is uniform on
any| — oo,al. If ¢ tends to zero attoo, the limit

to the inverse of a fractional integral. For non inte-
ger values ofy, it is based upon fractional finite differ-
encesA¢,;, defined according to [Samko, Kilbas and
Marichev, 1993]

Aff(x) =

o(=1) () f(z — kl) = X3Zgwi f(z — kl). (6)

The limit when! tends to zero, of ~*AY, f(x), is
called a Grunwald-Letnikov’s derivative. It also yields
aleftinverse td$, hence it coincides with Marchaud’s
derivativeD¢ f(z) when £ is of the form of ¢ with

@ in L+, due to Theorem A of [Samko, 1992]. The re-
sult was retrieved in [ Meerschaert and Scheffler, 2002]
with the help of Lévy representation formulas for in-
finitely divisible probability laws. Efficient numerical
schemes are based upon Grunwald-Letnikov’s approx-
imation{~*A¢, f(z) to Dg f(z) .

The (%) = % in (6) behave ag—~~1
whenk is large, providedy is not an integer [ Gorenflo
and Mainardi, 1999]. MoreoveE ,(—1)*(2) = 0
holds foraw > 0, and implies£e ,(—1)*(¢)k" = 0
whenr is an integer satisfying < r < a. We will see

I,that convolutions, with integrals instead of series, com-

bined with dilatations and contractions of dependent
and independent variables (akin to the multiplication
of £ by in the argument of (z — kl) in (6), combined
with the factor/—* in front of the series), also provide
approximations to the inverse of a fractional integrals.

2.3 A new approach to the left inverse of a frac-
tional integrals
In (6), weightsw = (—1)*(¢) match the discrete
variant of asymptotic behaviour and oscillation de-
scribed by the following hypotheses.



HypothesisH ! («): function F satisfiest ! (o) if, for
any integer such thad < r < «, y"F(y) is integrable
in R and satisfieg), ™ F(y)y"dy = 0.

Hypothesis H?(«): function F' satisfiesH?(«) if F
is of the formF(y) = Fi(y) + Cy~*~! in a neigh-
bourhood oftoco, with F; (y)y® being integrable near
+00.

When« is an integer, we use the following stronger
version.

Hypothesis H'?(«): function F satisfiesH'?(«) if
F(y)y~ is integrable nea-oco.

We claim that combining appropriate dilatations of

independent and dependent variables and convolution

whose kernel satisfie&*(«) and H?(«) yields ap-
proximations to the inverse of the fractional integral
1%, according to the following theorem.

Theorem : Let o be a positive real number, and let
function F satisfy H'(«). Then, points(i)-(iii) hold
if o is not an integer whilé” satisfiesi?(«). They
also hold when is an integer, provided’ satisfies the
stronger assumptioH?(«) instead ofH?(a).

(i) For f = I®p with ¢ in L andp > 1, the limit of
1= [7 I%p(z + ly) F(y)dy exists inL,; and is equal
to a constant\, times ¢, in L and also pointwise
wherey is right-continuous.

(i) For f = I¢p with ¢ in L, andp > 1, the
limit of 1= [ I¥¢(z — ly)F(y)dy exists inL, and
is equal toAy, in L, and also pointwise wherg is
left-continuous.

(iii) The constantA in (i) and (ii) is equal to
I IS (HF)(y)dy, with H representing Heaviside's
function. Hence it does not depend pnSuppose now
thata is not an integer. I1f(y) is equal toy=*~!in a
neighbourhood of-oo, we haveA = T'(—a). If F(y)
is equal toy~*~1=¢B(y) in a neighbourhood of o,
with ¢ > 0 while B is bounded, we hav& = 0.

Remark 3 1727 [ (- + y)F(%)dy is equal to
= [ F( 4+ ly) F(y)dy.

Remark 4: Due to the Theorem 10.21 of [Rubin,
1996], recalled in Remark 1, we hay¢z) = D% f(x)
in LF for f = IS¢ in ¢ in LE. For suchf the
present theorem states that the limitof [ f(z +
ly)F(y)dy exists and is equal, m.‘ui to Marchaud’s
derivativeD? f(z).

The limiting casex = 0 is not included in the above
claim, and the definition (2) af¢ does not make sense
for this value of the exponent. Nevertheless, it is not
difficult to see that a similar ansatz then holds.

3 Proof of the Theorem
Non-integer values af will be considered first.

3.1 Proof of the Theorem, fora not an integer
Proving (i) will be enough for(i) and (ii), and will
be achieved by checking that equals the limit of
1= [° f(- + ly)F(y)dy under hypothese$/'(a)-

H?(a). Settingy = z + Isin

/ Oo(Ifga)(x + ) F(t)dt
0

1 “+o0 +oo N
—_— Ft/ oY)y —x — 1) dydt,
L(a) Jo ) o+t W)t )

the latter expression yields

1o /O fz + ) F(t)dt =

1 +oo +oo L
— Ft/ oz +1s)(s — t)* “dsdt.
w0 [ erme-n

Fubini’s Theorem then implies

l*a/o (I%@)(x + It)F(t)dt

y*tdtds (7)

ﬁ/ﬁo ;L—HS/F

a.e.inRif I¢(HF)(s a) Jo F(T)(s=T)*1dT
isin LY(RT). Indeed due to Youngs mequality, the
latter implies tha;[ lo(x+1s)||[ I3 (HF)(s)|ds be-
longs to LP(R), hence is flnlte a.e. ik. More-
over, the convolutlorf o(x +1s)I¢(HF)(s)ds is
IS I9(HF)(s)ds times an approximation to ldentity,
due to Theorem 1.3 of [Samko, Kilbas and Marichev,
1993] which states that the right hand-side of (7) con-
verges tof; I (HF)(s)ds x ¢(x) in LP. The con-
vergence is, moreover, pointwise whegeis right-
continuous. Hence poin(s) and(ii) of the Theorem
will be a consequence of the following Lemma.

Lemma 1: If F satisfiesH! () and H?(«) with o
not an integer/¢ (H F) is integrable oveRR .

Lemma 4.12 of [Rubin, 1996] (poinii) implies
Lemma 1 wherF'(z)z® is integrable, withy possibly
being an integer. Hence, it suffices to prove Lemma 1
for functionsF" satisfying the hypotheses of Lemma 2
below, while for pointiii) we have to comput& when
F behaves as a power of the argument neas.

To this end, takep(z) = (1 — )™ *for0 <z < 1
andy(xz) = 0 elsewhere, withn an integer satisfying
0 <m < a < m+1. Functiony belongs taL.?(R) for
pla—m) <1, andf( ) = I%p(x) satisfiesf(z) =0
forz > 1, f(z F(a)f 1— )™=t —x)> tdt for

zin|o, 1[andf( ) = F(a) fo 1—t)ym=(t—x)* 1dt



for x < 0, where integrals converge absolutely. In
view of Remark 1 we have(x) = D f(z) in LP(R)
and also pointwise almost everywhere. Sid€e(x)

is equal tor{_ ((1—)™~)(x) = Sl (1 —z)m
for 0 < z < 1 [ Kilbas, Srivastava and Trujillo, 2006],
function f satisfiesf(z) = 0 forz > 1 and f(x) =

Hmti0) (1 — )™ for 0 < = < 1. Due to point(i),

the limit of J(a, I,z) = 1= [7 f(z + ly)F(y)dy is
Ay(x)in L, and pointwise wherg is right continu-
ous, hence in any interval included]ii 1].

To compute the pointwise limit for in ]0,1[, we

use H'(a) which implies -7 (a,l,2)

e [T = Y)Y E(Y/1)dY with ly = Y.
The latter expression is equal teflt‘f:(l —x —
Y)Y ~*~1dY provided F(y) = y~ 2! holds near
infinity, when! is small enough. From this we obtain

I'(m m—a m (1
) (L) = (1 = )™ (=1 o (1 -
T)mT>~™=1dT, where we recognize a Bernoulli Beta
function [Abramowitz and I. Stegun, 1965], and we de-

duce

J(a,l,z) =T(—a)(l — z)™

when! is small. Hence we havé = I'(—a) if F(y)
is equal toy—>~1! near infinity, in agreement with par-

the T()I$ Xpi,i41(() expand as
Lyt @fp N (CRE (4 1)

B;(z)z~™~2], with the B; being bounded, so that the
2% B;(z)z~™~? are integrable nearcc.
SettingG(X) = [ [(1 — )*~! — (14

D R G G Eye—e~tat  (10)

allows us to write the first integral on the right hand-
side of (9) as

e

—y)* Ty dy = 27 [G(1)

1 —1)k
- +E}311( )

" n Ta...(a—k—l—l)]]—i—x*l[

(_1)k Tya—k
Sl an (a—k+1)(5) )

X

~G(Af2) =

Since G(A/z) is the integral of a continuous func-
tion dominated b ‘*“'((n‘jjrq’;,_l)‘thfl—a, 7 1G(A/x)

tial results presented in [Néel, Abdennadher and Joel-is integrable in a neighbourhood etx.

son, 2007]. If, instead?(y) is equal toB(y)y ¢
there, we have s J(a, 1, 2) = 17° [0 (1 -

r — Y)mY-2"1=¢B(Y/l)dY, which tends to zero
when! does.

Hence poinfiii) is proved. It remains to prove Lemma
1 for F'(z) being proportional ta =~ near infinity.

3.2 ProofofLemmal
It is enough to prove the following lemma.
Lemma2:For0<m < a<m+1,withmin N,
gi(x) = 277 X[ 400 @NA G5 (x) = B0 DiX [ i41[s
the fractional integral ¢ (Hg*) of g* = gi — g5 is
integrable inkR™ if and only if g* satisfies

400
/ y"g* (y)dy = 0,n = 0...m. (8)
0

Proof of Lemma 2 : Sinceg* is locally integrable,
it suffices to check whethdr} (Hg*) is integrable in a

neighbourhood of-oo.
First, notice that (8) is equivalent to
m i+1 'r+1_1~r+1 —a+r
nm b )r+1 = 4 forr = 0,..m
Moreover, forx > A, in
D(a)I$(Hg")(x) =

/A ()" gy~ S b (@) X s (9)

Now, we will that G(1) — I[1 +
s (’kﬂ)k(a)...(a — k + 1)] is equal to zero.

Indeed, setting
1
JRCERIS
0

see

9(p,q)

ny
U

(11)
we haveG(1) = g(—a, a), while, on the right hand-
side of (11), we recognize the Bernoulli beta func-
tion ([Abramowitz and I. Stegun, 1969 (p, q), equal

to %ﬂ;ﬁ) for complex valuedp and ¢ satisfying

Re(p) > 0 andRe(q) > 0. For such(p, q), we have

9(,q) = B(p,q) — 1 =3 il (g — 1) (g — B).

With ¢ being fixed, equal tay, this equality extends
to complex valued which are not negative integers
and satisfyRe(p) > po > —m — 1. Indeed, the right
hand-side 2@ — [1 4 sy | (— 1)k lepelizb
analytic for Re(p) > pp > —m — 1, except at poles
0,—1,...,—m of I'. The left hand-sidg(p, ¢) is also
analytic in{p € C/Re(p) > po}, due to dominated
convergence theorem. Hence, analytic continuation in
Rep > po — {0, ..., —m} yields

(g—1)..(g—k)

Mp+ k) Bp.9)

1
g(p,q) + p + 5, (—1)F



for p = —a. This provesG(1) — 1[1 + the bal::mceKl*‘**l[foJroo flz — yv)Gy(y/l)dy —

s, C  (a— k)] = 0, due toB(—a, a) = 0. Jo7 f(z + y)G_(y/1)dy] with G_ being the tail
Now, distributionG_(z) = [~ ¢(y)dy, if f represents the
density of walkers. In view of Remark 3, the flux is
I 2 A equal ok 1= [[," f(z —ly) G4 (y)dy — [ fla+
D) If(Hgz)(2) = —[——+ 1y)G_(y)dy).

Of course kernel&'+ satisfy H2(«) but notH!(«).
Nevertheless, we can modify tiig, so thatH!(«) be
satisfied without changing the flux, provided we check

_ cla—k+2) that
ym+l,—k (k41 Y (v A-a—1+k
k=2 T ( ) (k — 1)| ]
“+o0 “+o0
is z2~m=1 times a polynomial, plus a function, inte- o G y)dy = o G-dy=TI  (12)

grable near-oco. The polynomial is identically zero if

and qnly If (8) holds. Hence Lemma 2 is proved. holds. Indeed, substracting from tli&. a compactly
F(()jr_rlﬂteger v:\l#es o«fxghe hypo:lhejes OT Iaemnlza 2 | supported function whose integral Isyields kernels
an eorem ?Ygf? e strenghted, excluding kerne Ssatisfying the hypotheses of our theorem.

I proportional tox nearco. Then, letting/ tend to zero yields that the diffusive

limit of the flux is a fractional derivative of the order

3.3 Integer values ofw of a: this was proved by [Néel, Abdennadher and Joel-

Let nowa be a positive integer. WheR(z)z® isin-  son, 2007] in a slightly restricted context, thus retriev-
tegrable, the lemma 4.12 of [Rubin, 1996] implies the ing a result obtained by [Paradisi, Cesari, Mainardi, and
theorem. Tampieri, 2001] from space-fractional diffusion equa-

It does not extend to kernel§' decresasing ex- tions.
actly asz~>"! at +00. Indeed, with the nota-
tions of Lemma 2,I'(a)I$(Hgs)(x) is now a poly-

nomial. Forz > A, T'(a)I$(Hgi)(z) is equal to 4.2 Proofof (12)

1 ket (D 3 O _ _ To prove (12), notice that the difference
Ysort () (@ T = A7), which splits (GL(y) — G_(y))dy is also the integral,

into the sum 0%22;5(2‘1)(’;3;4,plusapolyno- over [0,+occ[ of the cumulated tail difference

mial. The coefficient oft is =12, (2)(~1)>*¥ =  D(@) = J(e(y) = @(—y))dy. According to [
é. Therefore, it is even not possible to find coefficients Bingham, Goldie and Teugels, 1987%roo D(z)dx
b; such thati(H g*) be integrable neaf-co. is the limit whenk tends to0, of Y™ with V (k)

representing the imaginary part of the characteristic
function®(k) of o, hence the following remark holds.

4F Or@gﬁﬂgtfg& feisvr;i%n;\rllznl(sformula (1) applies Remark 5: All densities whose characteristic func-
§ PP tion has imaginary part’ (k) equivalent tok! ¢ with

to randomwalks, whose successive independent jumps, oo
identically distributed, have tail distributions satisty = > 0 for ¥ nearo are such thay, ~ D(w)dx = 0.
H2(a). The corresponding jump length distributions It rémains to check thak’ (k) behaves ag ™ near
belong to the domain of stable attractionofr 1 sta-  0: 10 this end, we use the Theorem 8 of [ Pitman,
ble laws [Feller, 1970]. We will see that then, the flux 1968]- It states that densities such @svhose cu-
of walkers splits into expressions, very similar to (1), mulﬂoed tail difference) is integrable satisfy’ (k) =
and that the diffusive limit is a linear combination of & [, ~ D(x)dz+Vi(k) with V4 (k) equivalentto a con-
derivatives of the order af. stant timesD(1/k) whenk is small, provided is reg-
ularly varying [ Bingham, Goldie and Teugels, 1987]
of type—m near infinity, withm strictly between and
3. Continuous densities behavingas*~! are in this
case, and the following remark holds, which achieves
proving (12).

Remark 6: For functionsG4+ which are tail inte-
grals of probability laws whose density is proportional
to =22 near infinity, integralsf(;roo G4 (y)dy and

[F°° G_(y)dy are equal.

4.1 The flux of walkers

Here we assume that jumps are distributed accord-
ing to [X, where the random variabl&¥ has density
¢, equivalent tar—2~“ near infinity, while, moreover,
pausing times have finite expectationParametet is
a length scale.

Then, with G, (z) representing the tail distri-
bution "> o(y)dy, the probability rate of a
tagged walker to cross locatiom to the right
is 771" f@ — y)Gi(y/ldy, equal to 5 Conclusion
Kl*a*1f0+°° flx — y)G4+(y/l)dy if 7 and [ sat- Formula (1), which can be used for all positive values
isfy the scaling law [“T! = K7. Hence the flux is  of the orderx of the derivation, generalizes Griinwald-



Letnikov’s, with integrals instead of series. It com- transport processeBhysica A 2931-2), 130

bines convolution, contraction (multiplication by or

dilatation (multiplication by1/l) of the argument of  Pitman, E.J.G. On the behaviour of the characteristic
one among the two involved functions, and dilatation function of a probability distribution in the neigh-

(multiplication byl ~—<) of the issue. Then, the limit“ bourhood of the origidAMS(A)8 422-43
tending to zero” yields a fractional derivative, accord- Rubin, B. (1996fractional integrals and potentials,
ing to our theorem. In order to satisty! («), the ker- Harlow: Longman.

nel F' has to oscillate such that all moments of integer

order smaller tham be equal to zero. Except when Samko, S.G. A.A. Kilbas, A.A. and Marichev, O.l.

is an integerp + 1 represents the first power af ! (1993).Fractional integrals and derivatives. theory

in the expansion, near infinity, of the kernel. Some im-  and applications. Gordon and Breach. New York.

provements should now allow us to extend our theorem

to complex orders and, more importantly, it remainsto Samko, S.G. (1992) Hypersingular integrals and

generalize to higher dimensions. differences of fractional orderBroc. Steklov Inst.
For o betweer) and1, our theorem helps computing ~ Math. 2 pp 175-193

the flux of particles performing random walks. Here,

we discussed this point for random walks in infinite Stein, E.M. (1970)8ngular integrals and differentia-

domains. In fact, it adapts to cases with boundaries, bility properties of functions Princeton. University

sources and sinks, as sketched in [Néel, Abdennadher Press.

and Joelson, 2007].
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