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Abstract 

This paper addresses the calculation of fractional 
derivatives of fractional order for non-smooth data. 
The noise is avoided by adopting an optimization 
formulation using genetic algorithms (GA). Given 
the flexibility of the evolutionary schemes it is 
established a hierarchical GA composed by a 
series of two GAs, each one with having a distinct 
fitness function. 
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1    Introduction 

Fractional calculus (FC) deals with the 
generalization of integrals and derivatives to a 
non-integer, or even complex, order [Bagley, et al. 
1983; Miller, et al. 1993; Oldham, et al., 1974; 
Ross, 1977; Samko, et al. 1993]. FC encompasses 
a wide range of potential fields of application by 
bringing into broader paradigm concepts of 
physics, chemistry and engineering [Machado, 
1997; Machado, 2001; Mainardi, 1996; Oustaloup, 
1991; Podlubny, 1999]. Nevertheless, until 
recently, FC was an ‘unknown’ mathematical tool 
for the applied sciences, being the present day 
interest motivated by the developments in the areas 
of nonlinear dynamics, chaos and modeling. 

One of the reasons for this state of affairs is the 
lack of a simple interpretation for a fractional order 
derivative. In fact, while for the integer-order case 
we have a common geometric concept in the 
fractional-order case we have problems in finding 
a clear and comprehensive reasoning scheme. 
Several researchers proposed different approaches 
for the interpretation of fractional-order integrals 
and derivatives, but the fact is that a final paradigm 
is not yet well established [Adda, 1997; Machado, 
2003; Moshrefi-Torbati et al. 1998; Nigmatullin, 
1992; Podlubny, 2002; Rutman, 1994; 
Stanislavsky, 2004; Tatom, 1995; Yu, et al. 1997]. 

A second reason for the difficulties in applying 
FC is due to the higher complexity of algorithms 
for the calculation of fractional derivatives and 
integrals. The generalization of the 
integrodifferential operator requires the adoption 
of approximations based on series or rational 
fraction expansions [Oustaloup, 1991; Machado, 
1997]. While the main volume of contributions has 
focused in getting the best approximation scheme, 
the problem of its calculation for real data was not 
yet tackled. In fact, besides the quality of the 
approximation, two aspects must be considered in 
the calculation of fractional derivatives and 
integrals, namely the computational load and the 
effect of noise. The first aspect poses a small 
impact in today’s computing systems, but the 
second remains to be investigated. 

The problem of calculating integer-order 
derivatives for noisy data is well known. For 
avoiding the emergence of high amplitude peaks 
the classical approach consists in adopting 
polynomials on increasing order, or a plethora of 
distinct types of low-pass filters, that somehow 
smooth the data [Chartrand, 2005; Li, 2005]. 
However, it was verified that, in many cases, those 
measures are not successful. Bearing these facts in 
mind, more recently it was recognized that the 
problem was ill posed and that an inverse 
formulation, incorporating an optimization 
scheme, was the best strategy. 

In this line of thought, this paper addresses the 
calculation of fractional derivatives of fractional 
order for non-smooth data, and is organized as 
follows. Section 2 introduces the calculation of 
fractional derivatives for ideal data, the problem of 
noise and the formulation of the inverse problem, 
and the optimization scheme based on genetic 
algorithms. Section 3 presents a set of experiments 
that demonstrate the effectiveness of the proposed 
method. Finally, section 4 outlines the main 
conclusions. 

 
 
 



2    Problem Formulation and Adopted Tools 
 
2.1    Fractional Derivatives 

Since the foundation of the differential calculus 
the generalization of the concept of derivative and 
integral to a non-integer order α has been the 
subject of several approaches such as the 
Riemann-Liouville, Grünwald-Letnikov, Caputo 
and, based on transforms, the Fourier/Laplace 
definitions. 

From the discrete-time point of view the 
Grünwald-Letnikov definition seems more 
attractive and, consequently will be adopted in the 
sequel. 

Based on the concept of fractional differential of 
order α, the Grünwald-Letnikov definition of a 
derivative of fractional order α of the signal x(t), 

( )txDα , consists in the expression: 
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where Γ is the gamma function and h is the time 
increment. This formulation inspires a discrete-
time calculation algorithm, based on the 
approximation of the time increment h through the 
sampling period T, yielding the equation in the z 
domain: 
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The implementation of expression (2) 

corresponds to a r-term truncated series given by: 
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This series can be implemented by a rational 

fraction expansion which leads to a superior 
compromise in what concerns the number of terms 
versus the quality of the approximation. 
Nevertheless, since the study focuses mainly the 
problem of noise, the simple series approximation 
will be adopted. 
 
 
2.2    Calculation of Derivatives of Noisy Data 

In many scientific applications it is necessary to 
calculate the derivative of numerical data. 
Classical finite-difference approximations amplify 
greatly any noise present in the data. Data 
denoising, before or after differentiating, does not 
generally give satisfactory results. A method that 
leads to good results consists in the regularization 
of the differentiation process itself. This 

guarantees that the computed derivative will have 
some degree of regularity, to an extent that is 
under control by adjusting parameters. A common 
framework for the regularization [Ahnert, et al. 
2006; Chartrand, 2005; Knowles, 1995; Le, et al. 
2007] corresponds to the formulation of the 
inverse problem. In this perspective, u(t), the 
derivative of a function f(t) over the interval 

[ ]Lt ,0∈ , is the minimizer of the functional: 
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where R{u} is a regularization term that penalizes 

irregularity in u(t), ( )[ ] ∫=
t

dtutuA
0

 is the operator 

of antidifferentiation, S{A[u] − f} is a data 
similarity term that penalizes discrepancy between 
A[u] and f, and +ℜ∈a  is a regularization 
parameter that controls the balance between the 
two terms. 

The regularization and similarity terms, R{ } and 
S{ }, adopt often the squared L2 norm. Therefore, 
it is considered that the total-variation 
regularization and the computation of the 
derivative of f over the interval [0, L] is the 
minimizer of the functional: 
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where for convenience is assumed that f(0) = 0 
which, in practice consists in subtracting f(0) from 
f(t). 

A simple approach to minimizing (5) is gradient 
descent as described in [Chartrand, 2005]. 
However, in the present study it will be adopted a 
different optimization technique based on genetic 
algorithms (GAs) due to its superior flexibility. In 
fact, the standard numerical optimization has 
difficulties in achieving an adequate compromise 
between the terms R{ } and S{ }. The optimization 
requires several attempts, with distinct values of 
the regularization parameter a, and often we verify 
that there is no good tuning. Therefore, in the next 
sub-section we adopt a hierarchical GA with two 
simple GAs in series, each one optimizing a 
separate term. 
 
 
2.3    Optimization with Genetic Algorithms 

A GA is a search technique used in computing to 
find exact or approximate solutions to optimization 
and search problems. GAs are simulated in a 
computing system, and consist in a population of 
representations of candidate solutions, of an 
optimization problem, that evolve toward better 
solutions. 

Once the genetic representation and the fitness 
function are defined, the GA proceeds to initialize 



a population of solutions randomly, and then to 
improve it through the repetitive application of 
mutation, crossover, inversion and selection 
operators. 

The evolution usually starts from a population of 
randomly generated individuals. In each 
generation, not only the fitness of every individual 
in the population is evaluated, but also several 
individuals are stochastically selected from the 
current population and modified to form a new 
population. The new population is then used in the 
next iteration of the algorithm. The GA terminates 
when either a maximum number of generations has 
been produced, or a satisfactory fitness level has 
been reached. 

During the successive generation, a part or the 
totality of the population is selected to breed a new 
generation. Individual solutions are selected 
through a fitness-based process, where fitter 
solutions (measured by a fitness function) are 
usually more likely to be selected. The pseudo-
code of the GA is: 
1. Choose the initial population 
2. Evaluate the fitness of each 
individual in the population 
3. Repeat 
3.1. Select best-ranking 
individuals to reproduce 
3.2. Breed new generation 
through crossover and mutation 
and give birth to offspring 
3.3. Evaluate the fitness of 
the offspring individuals 
3.4. Replace the worst ranked 
part of population with 
offspring 

4. Until termination 
In the present article it also used the common 

technique of elitism which is the process of 
selecting the better individuals to form the parents 
in the offspring generation. 

As mentioned in the previous subsection the 
minimization of F(u) in expression (5) poses 
problem of establishing a compromise between the 
terms R{ } and S{ }. Therefore, given the 
flexibility of the evolutionary schemes it was 
established a hierarchical GA composed by a 
series of two GAs, that is GA12 = {GA1 + GA2}, 
each one with having a distinct fitness function 
corresponding to: 
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The GA population is constituted by a series of 

candidate values [ ]iu=U , established at the 
discrete sampling points [ ]it=T , ni ,,0 L= , and 

the evolution consists in a loop of iterations of the 
GA according with the pseudo-code: 
1. Choose the initial population 
2. Repeat 
2.1. Execute N1 iterations of 
GA1 with fitness function F1 
2.2. Execute N2 iterations of 
GA2 with fitness function F2 

3. Until termination 
where termination occurs for a total number of 
iterations N12 ~ (N1 + N2). 
 
 
3    Fractional Differentiation of Noisy Data 

In this section we evaluate the proposed 
technique in the numerical evaluation of a 
fractional derivative of a function corrupted by 
additive noise. 

In the experiments the GA12 adopts N1 = N2 = 1, 
a population of P = 100 individuals, mutation 
probability 1.0=mp , single point crossover and 
reproduction within all population considering 
elitism. The number of sampling points n = 30, the 
function f(t) = t defined over the interval [ ]1,0∈t , 
and additive noise given by a uniform probability 
density function in the interval [ ]XX +− , . 

Since the global performance is sensitive to the 
number of iterations and the amplitude of the 
noise, we investigate the GA12 performance for 
N12 = {103, 5 103, 104, 5 104, 105} and X = {0.0, 
5.0 10−3, 10−2, 5.0 10−2, 10−1}. 

It is considered the evaluation of a derivative of 
order 21=α  through the series approximation (3) 
where T = 1/n and r = n = 30 in order to avoid 
truncation errors. For initialization matters it is 
considered f(t) = 0, t < 0, and, consequently, that 
additive noise affects f(t) only in the interval 

[ ]1,0∈t . Moreover, due to the stochastic nature of 
the evolutionary schemes, the experiments are 
repeated for NT = 10 cases with different initial 
random GA populations. 

Figure 1 depicts the results of the new 
computational scheme for the case of f(t) without 
any noise (i.e., X = 0.0) and N12 = 103 and 
N12 = 105. 

We verify that the GA has a poor performance 
for a low number of iterations, but it captures 
adequately the derivative when a high number of 
iterations are executed leading to a chart very close 
to the theoretical value of π= ttD 221 . The 
slow GA convergence is, in fact, due to the 
requirement posed by the series of the two distinct 
fitness functions. 

Figure 2 shows the corresponding result for an 
additive noise with amplitude X = 0.01 and N12 = 
104 and N12 = 105 iterations. We verify that noise 
poses more stringent requirements but that, after a 
sufficient number of iterations, we get good 
results. 
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Figure 1. Chart of D1/2t, 0 ≤ t ≤ 1, X = 0.0, for N12 = 103 and 
N12 = 105 (n = 30, NT = 10). 

 
 
4    Conclusions 

The recent advances in fractional calculus point 
towards important developments in the application 
of this mathematical concept. During the last years 
were proposed several algorithms for the 
approximate calculation of fractional derivatives 
and integrals. Nevertheless, the real case of data 
with noise was somewhat overlooked. In this paper 
it was proposed a new method based on 
evolutionary concepts for the calculation of 
fractional derivatives. In this line of thought, it was 
introduced an optimization formulation and a 
hierarchical genetic algorithm, consisting in a 
series of two GAs, capable of handling the distinct 
requirements posed by the derivative calculation 
and the noise elimination. The results demonstrate 
the excellent performance, namely the 
convergence and the robustness for high levels of 
noise. While the study addressed an off-line 
calculation strategy, the results suggest that an on-
line calculation may be feasible when optimizing 
the evolutionary scheme. 
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Figure 2. Chart of D1/2t, 0 ≤ t ≤ 1, X = 0.01, for N12 = 104 and 
N12 = 105 (n = 30, NT = 10). 
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