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Abstract
We study social systems of agents in statistical physics

developed for systems with huge number ∼ 1023 of
atoms. Especially we note a situation where agents
have no individuality. Even a society of whole hu-
man beings on our earth takes a very small number at
most ∼ 10−14× Avogadro constant. For that reason,
it seems difficult to directly apply statistical physics
to analyze social phenomena. We have a random ex-
change model of resource among agents that has been
examined in statistical physics applied to biochemistry.
The model is applicable to systems with no huge num-
ber of agents. This conventional method is enlarged in
this paper to allow agents, each of whose characteristic
or individuality cannot be identified. In the situations
we see Bose distribution in units of resource. Even for
systems with only a few agents, the Bose distribution
holds.
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1 Introduction
We have so far various studies[Deguchi and Kijima,

2009; Axelrod and Cohen, 1999; Epstein and Axtell,
1996] on social systems using method of multi-agent
that was pioneered by [Schelling, 1971]. Simulation by
specified rules on element agents leads to correspond-
ing results. There are possibilities that someone can
purposely make specified rules to guide our society to
some political aim based on his simulation results. To
avoid the possible situation, we should take rules that
govern agent behavior as natural as possible. In the
literature[Oosawa, 2011], systems of agents have been
studied where they only exchange their resources by
equal chance without any ad-hoc specified rule. Dis-
tribution of resources was shown to become statistics
that we fit as Boltzmann distribution. As we also reex-
amine in the paper, even among a few agents statistics
met that of Boltzmann. Oosawa’s method is applicable

also to social systems, although he is interested mainly
in biochemistry[Kawamura and Maruyama, 1970]. In
various social statistical research, it is tacitly assumed
that we can identify who contributes to each point in
the background data. But is this identification abso-
lutely necessary? For example, in distributing a profit
obtained especially among unskilled laborers, manage-
ments are interested in numbers of them corresponding
to a level of salary rather than a detailed information
who takes how much salaries. Note that multi-agent
scheme[Bouchaud and Mezard, 2000; Scafetta, West
and Picozzi, 2004] assumes each agent does his/her ac-
tion according to some rules. The rules are the very in-
dividualities that express character of agents. In this pa-
per, we take social systems of agents where we cannot
identify characteristic or individuality of each agent.
We call such an agent as quantum agent while the ordi-
nary one as classical agent. We examine an exchange
rule that is not ad-hoc and that we can fit as “Bose
distribution” well-known in quantum statistics. This is
done by extending Oosawa’s method. We show appro-
priate dependence of results on agent number X and
resource number Y . As identifying character of each
agent is considered as meaningless, we anticipate re-
source distributing under Bose or Fermi statistics. We
have no maximum units of resource and the resulting
statistics will be Bose type.
First in 2, we review the problem[Oosawa, 2011] of

sharing finite resources among finite number of agents.
After showing a rule of exchanging resource in 2.1, we
restrict ourselves to systems with resources of Y = 3
units among X = 3 agents to clarify specified numeri-
cal values as easily as possible. We give explicit calcu-
lation of trends in 2.2 according to transition matrix and
quantitative fitting of resource distribution in 2.3 as our
contribution to the problem. To individuality of each
agent, we put out of consideration in 3. We character-
ize an agent system only as an ensemble with specified
number of agents and resources. We consider in 3.1
fair exchange of resource. According to the results we
examine dynamics in 3.2 and show appropriate fitting
to “Bose distribution” in 3.3. In the studies of quantum
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agents, we take a number of agents X and that of re-
sources Y as 10 ∼ 100. We also present dependence
of how appropriately the results fit to the Bose distri-
bution on these X and Y . Summary and discussion are
given in 4. This article shows contents those presented
in a conference[Itami, 2012] with slight modifications.

2 Statistics in exchanging resource among agents
According to the literature[Oosawa, 2011], we study

a system of 3 agents where fair exchange of 3 units
of resources is done. After we show in 2.1 a rule of
exchange, system dynamics is explicitly calculated by
transition matrix in 2.2. Even for only X = 3 agents
and Y = 3 units of resources, the distribution of re-
sources is shown in 2.3 to become Boltzmann’s one.

2.1 Exchanging Resource
Let us share 3 units of resource among 3 agents ac-

cording to the following rules

1. Any one of 9 combinations T → T ,T → E,T →
K, E → T ,E → E,E → K, K → T ,K → E
and K → K of agent giving to another one be-
ing given, is assumed to occur in an equal prob-
ability 1

9 . Fig.1 shows an exchange of T → E.

Figure 1. When Mr.T has a turn to give one unit of his resource
to Mr.E, we have a pattern where both Miss.K and Mr.T have no
resource while Mr.E monopolizes three units of resource.

When T gives his resource to E, E monopolizes
all resource while T and K become without any
unit of resource. Among the same agent, T → T ,
E → E or K → K, we also assume resource ex-
change that occurs also in a probability 1

9 . After
such exchange, obviously no change of state takes
place.

2. To an agent without any resource, we do not re-
quire anyone to lend a unit of resource. When
K has no unit of resource, as shown in Fig.2, an
request of K → E makes the present state un-
changed, as K has no unit.

Let us examine the following 10 patterns, from a1 to
d4, of resource distribution to study statistics of the

Figure 2. When Miss.K has to give one unit of her resource, a pat-
tern of Mr.E with two units and Mr.T with one unit does not change
as she has no unit of resource.

distribution. In the following formula (NT , NE , NK),
NX shows units of resource that Mr./Miss.X holds.

a1 = (3, 0, 0)
b1 = (2, 1, 0)
b2 = (2, 0, 1)
c1 = (1, 2, 0)
c2 = (1, 1, 1)
c3 = (1, 0, 2)
d1 = (0, 3, 0)
d2 = (0, 2, 1)
d3 = (0, 1, 2)
d4 = (0, 0, 3)

According to the above symbols, Fig.1 means a transi-
tion c1 → d1 and Fig.2 a transition of c1 → c1. When
we ignore individuality of each agent, only 3 patterns
will be considered instead of 10, a1 to d4, as shown in
3.1.

2.2 Representation of Exchanging Resource by
Transition Matrix

Transition according to the foregoing rules is ex-
pressed by a matrix among 10 patterns

PCl =
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
(1)

This matrix PCl enables us to calculate a probability px
that the agent system takes a state x at time n+ 1 as


pa1
pb1
· · ·
pd4


n+1

= PCl


pa1
pb1
· · ·
pd4


n

(2)
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Figure 3. Probabilities of each state a1 to d4 vary according to
the transition matrix (1). All probabilities approach to 0.1 = 1

10 ,
where 10 is the number of these states.

Fig.3 shows a time trend that starts an initial state
generated using appropriate uniform random numbers.
We see that a weight of any state approaches to 0.1 =
1
10 . Starting with any initial state gives the same result
as the transition matrix defined by (1) satisfies

(PCl)
n −→

n→∞
1

10
× 110 (3)

where 1N is a N dimensional square matrix with every
element being 1.

2.3 Boltzmann Distribution
As a result that every state a1,b1,· · · ,d4 occurs in an

equal probability, distribution for units of resource k is
fitted by the following one by Boltzmann

ρBltz(k) ≡ CBltz × e−βBltzk (4)

3 Agent That Has no Individuality
Studies above discussed showed that by fair exchange

of resource among agents

1. every pattern of resource distribution occurs in an
equal probability: principle of a priori probabili-
ties

2. as a result of the equality, resource distribution fits
Boltzmann distribution

It is the point that the literature[Oosawa, 2011] em-
phasizes that at first distribution of resource unit fol-
lows Boltzmann distribution while principle of equal a
priori probabilities comes last. In our fair exchange,
Boltzmann distribution does work without assuming
principle of equal a priori probabilities.
After we characterize our system by “occupation

number” in 3.1, exchanging resource is described as
state transition in 3.2. We see in 3.3 that statistics of
resource distribution is approximated by Bose distribu-
tion for Y units of resource among X agents.

3.1 Resource Exchange Among Agent Without In-
dividuality

Let us assume that agent has no individuality. How
many units which agent has does not appeal us. We
are interested only in how many agents have their own
units of resource. This situation reduces a number 10
of states given in 2.1 to the following 3 states. In the
following |N0, N1, N2, N3 > indicates the state where
we have N0 agents without any unit of resource, N1

ones with 1 unit, N2 ones with 2 units and N3 agents
who monopolize 3 units of resource.

α = |2, 0, 0, 1 >
β = |1, 1, 1, 0 >
γ = |0, 3, 0, 0 >

For example, Fig.1 shows a transition of β → α when
we paint any face of Teturo, Eric and Karin that char-
acterize his/her individuality into black. A transition
corresponding to Fig.2 is equal to β → β.

3.2 State Transition
We examine dynamics that governs state transitions

similarly as in 2.2.We take into account that our agents
have no individuality. Exchange of resource only by
1 unit allows the following 10 patterns. For example,
0 → 1 shows an operation (N0 → N0− 1,N1 → N1+
1,N2 → N2 and N3 → N3) that we reduce a number
N0 of agents without any resource by 1, while a number
N1 of agents who have 1 unit is increased by 1.

0 → 0
0 → 1
1 → 0
1 → 1
1 → 2
2 → 1
2 → 2
2 → 3
3 → 2
3 → 3

We calculate how each state α, β and γ changes. Re-
garding a method of calculation Fig.4 shows an ex-
ample how the state α changes by a transition 0 →
1. According to (a) in this Fig.4 we must take
one(encircled gray mass) of N0 = 2 to upper state re-
sulting (b). As an agent system denoted in (b) has 4
units of resource, we must reduce, by 1 level, recource
by any one of agents. Candidates that we can lower his
level are only 1⃝ or 2⃝. Probability of choosing one
of these two agents is equally 1

2 . (c) shows the results
when 1 unit of 1⃝ or 2⃝is lowered. A state α changes
in an equal probability to β or α according to a transi-
tion 0 → 1. Calculation for all transitions for all states
gives the following transition matrix

PQm =

 9
10

1
10 0

1
10

8
10

1
10

0 1
10

9
10

 (5)
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Figure 4. The transition of 0th level to 1st level for the state α
is shown in (a). In the transition, first one of the agents in the 0th
level goes up to 1st level as shown in (b). To conserve total units of
resource, we have two options of 1⃝ and 2⃝, which lead to the state
β or α as shown in (c), respectively.

Use of this transition matrix allows us to calculate a
probability px where the agent system takes a state x
as follows pαpβ

pγ


n+1

= PQm

pαpβ
pγ


n

(6)

Time trends are calculated as thin solid line(a state
α),dashed line (β) and dotted line(γ) in Fig.5.In the
Fig. we overwrite by thick lines “direct” simulation
by uniform random number starting with an appropri-
ate initial condition. We easily see that both thick and
thin lines converge to a common value of 1

3 . Similarly
to (3), that thin lines converge to 1

3 is a result of

(PQm)n −→
n→∞

1

3
× 13 (7)

Figure 5. Trends according to transition matrix and probabilistic
simulation are simultaneously drawn. Approaching to the equal
probability 1

3 are seen in both trends.

3.3 Bose Distribution
In generalizing these results above, we assume princi-

ple of equal a priori probabilities even when a number
X of agents or resource units Y increase. When we re-
strict ourselves to processes where Y units of resource
are exchanged among X agents we believe that lengthy
but straightforward calculation in larger values of X or
Y directly proves the principle. Under an assumption

Figure 6. Number density of systems of quantm agents are given
in (a) that is approximated by Bose distribution, while in (b) that of
classical agents is approximated by Boltzmann distribution. We set
here Y = 20 tips distributed over X = 100 agents.

that the principle of a priori equal probabilities holds
both in quantum agents without individuality and ordi-
nary classical agents, we calculate distributions of re-
source units. The results are shown in Fig.6, where (a)
corresponds to quantum agents while (b) to classical
agents. We set agent number as X = 100, and total
units of resource Y = 20. In these Figures (a) and (b),
we set Bose distribution as

ρBose(k) ≡
1

1
CBose

eβBosek − 1
(8)

In both (a) and (b), we show Boltzmann distribution
defined by (4) as dashed line and Bose distribution of
(8) as dotted line. These overwriting show that in (a)
resource distribution among quantum agents is close to
Bose distribution, while the distribution close to Boltz-
mann’s one in (b).
How close these are can be expressed quantitatively

by square residual sum that are given in Fig.7. This
Fig.7 explicitly presents that quantum agents can be ex-
pressed by Bose distribution while cannot be expressed
as Boltzmann distribution. Oppositely classical agents
can be represented by Boltzmann distribution, while it
is difficult to see this as Bose distribution. These calcu-
lations above restrict us to take agent number X = 100
and resource units Y = 20. Now let us examine how
the residuals depends on these values of X and Y .
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Figure 7. Sum of squared error in number distribution of quantum
agents from Bose distribution and Boltzmann distribution are given
in (a). Figure (b) shows those for classical agents.

These are written in Fig.8, where in (a) Y = 5, while in
(b) residual error for Y = 20 are plotted for each agent
number X ≤ 100.

Figure 8. Dependence of error on the number of agents are shown
in (a) and (b) for quantum agents. For classical agents we show (c)
and (d). Two systems of total energy = 5 and = 20 are calculated.

Residual error monotonically decrease as increase of
agent numbers. Also this decrease in comparing (a)
with (b) is seen for more units of total resource. These
observation of the data is consistent with intuition.

4 Summary and Discussion
We examined social systems in statistical physics.

Two features were emphasized. We first noted social
phenomena where no individuality appears. Secondly,
to study such systems we applied a model in biochem-
istry for systems with no huge number of agents. In
social systems we generally have a very small amount
of agents, at most ∼ 10−14× Avogadro constant, from
a statistical physics viewpoint. Among agents without
any individuality, we examined a fair share of resource
in a similar way adopted in the literature[Oosawa,

2011]. We cannot identify an agent, who has a spec-
ified number of units of resource. The fair sharing led
the result that resource distributes among agents ac-
cording to “Bose” distribution. Calculation of theoret-
ical transition matrix led to a priori equal probabilities
principle. The results for quantum agents obtained as
various simulation also showed the principle. Error of
fitting to Bose distributions was shown to decrease as
a number X of agents of total units Y of resource in-
crease. In various social statistical research, it is tacitly
assumed that we can identify who contributes to each
point in the background data. It is interesting that what
can be claimed when individuality is completely elim-
inated. Specifically a problem of distributing a profit
especially among unskilled laborers or sales volume of
companies are taken in the forthcoming reports. Fur-
thermore we have an interesting argument[Tanji, 1977]
that even “rice grain” that we tacitly believe their indi-
viduality can probably obey Bose or “Fermi” statistics.
It is necessary to examine what relation is laid between
such argument and our present research. Analysis of
social model of quantum agents helps constructing con-
trol strategies or policies on social phenomena such as
wealth condensation or winner-take-all.
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