
PHYSCON 2017, Florence, Italy, 17–19 July, 2017

A REACH SET MPC SCHEME FOR THE COOPERATIVE
CONTROL OF AUTONOMOUS UNDERWATER VEHICLES

Rui Gomes
SYSTEC, Faculty of Engineering

Institute for Systems and Robotics, Porto
Porto University, Portugal

rgomes@fe.up.pt

Fernando Lobo Pereira
SYSTEC, Institute for Systems and Robotics, Porto
Faculty of Engineering, Porto University, Portugal

RUDN University, Moscow, Russia
flp@fe.up.pt

Abstract
A Model Predictive Control (MPC) based architecture

is discussed to address the problem of the coordinated
control of Autonomous Underwater Vehicles in an en-
vironment in which not only the acoustic communica-
tions and perturbations impose formidable challenges
but also other two important classes of issues are con-
sidered: (i) unexpected emergence of obstacles, and
(ii) severe onboard computation constraints. The later
aspect is discussed by a novel implementation of the
MPC scheme - the Reach Set MPC - whose underly-
ing formal framework is briefly outlined. Finally some
simulation results are presented.
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1 Introduction
This article concerns the investigation of an efficient

Model Predictive Control type of scheme satisfying the
strict requirements arising in multi-agent cooperative
control of systems of autonomous robotic vehicles such
as underwater vehicles (AUVs), unmanned air vehi-
cles (UAVs), unmanned ground vehicles (UGVs) and
spacecrafts.
The issues motivating the development of such sys-

tems are extremely pervasive as they permeate most
of the great challenges in most of the human endeav-
ors, from advanced manufacturing systems to the ad-
vancement of the badly needed knowledge concern-
ing all terrestrial (here, environment and climate have
been strongly emphasized) and extra-terrestrial pro-
cesses, and passing by the management of all human
processes and of extraction of resources. More pre-
cisely, climate change, biodiversity, environment, natu-
ral resources management, territory management, mo-
bility, security and surveillance, to name just a few,
are some of the real world challenges that, today, hu-
man kind is perceiving as extremely urgent impose
a number of increasingly sophisticated requirements

for the underlying field studies data gathering, [Paley
et al., 2008; Zhang et al., 2007; Fiorelli et al., 2004].
Spatial and temporal distribution, persistence, com-
bination of wide area with local area data sampling,
etc., are some general requirements calling for a con-
certed instrumentation of the earth which encompasses
fixed, mobile sensor platforms and other devices net-
worked together. Many of these systems fall within the
so-called distributed networked cyberphysical systems.
One can easily devise many instances of missions (i.e.,
set of activities with a pre-defined purpose) involving,
possibly heterogeneous, networked unmanned vehicles
among which different sensors need to be distributed
that should move in a concerted way defined to ful-
fill the specified data sampling requirements. Thus, the
need for the motion cooperation of multiple robotic ve-
hicles surely raises key issues in the design of such sys-
tems.
Thus, it is not surprising that extensive research on

multi-agent cooperative control with autonomous sys-
tems has been conducted for some time now. Systems
such as autonomous underwater vehicles (AUVs), un-
manned air vehicles (UAVs), spacecrafts, ground ve-
hicles or robots are the most considered. The range
of AUV applications include seabed imaging and map-
ping, gradient search and lost cargo detection. Space-
craft formation flying is required for applications such
as the monitoring of Earth and its surrounding atmo-
sphere, geodesy, deep space imaging and exploration,
and in-orbit servicing and maintenance of spacecraft.
Also UAVs and AUVs have been widely used for in-
spection and monitoring of systems and infrastructures
(oil and gas platforms, port facilities, energy parks,
among other assets), ground surveying and mapping
(accident or fire detection, military reconnaissance),
and cargo transportation.
Naturally, formidable control and estimation chal-

lenges are posed by these systems’s nature and high
extent of autonomy combined with complex non-
linear coupled dynamics, sophisticated environmen-
tal perception - e.g., obstacle avoidance - for situa-
tional awareness, as well as, the management of on-



board scarce resources required for propulsion, com-
putation, sensing and communications. These general
requirements call for an increasing incorporation for
optimization-based techniques, notably the state feed-
back control scheme designated by MPC, in increas-
ingly complex control design that, over the years, have
been proposed in many approaches.
The research documented in this article is a step for-

ward in this context. Here, we embed the MPC scheme
in an overall architecture that, by taking into account
the onboard sensing and computation capabilities, al-
lows the synthesis of control strategies preventing the
collision with obstacles while promoting the optimiza-
tion of the overall resources management. Moreover,
we improve on the state-of-the-art in the sense that
a novel MPC implementation maximizing the amount
of off-line pre-computation whenever this allowed by
time-invariant information.
This article is organized as follows: In the next sec-

tion we provide overview of the most pertinent state-
of-the-art. In the following section, we present the
overall control problem formulation with emphasis in
the key challenging requirements. Then, in section 4,
we present the computationally efficient MPC scheme
for the decentralized cooperative control of multiple
AUVs. In section 5, we present the overall architecture
that articulates the MPC scheme with the sensing ca-
pabilities to avoid collision with obstacles. Preliminary
results are shown in section 6 just before the last sec-
tion that includes some conclusions and future work.

2 Brief State-of-the-Art
The control problem of vehicles in fluids addressed is

this article is difficult. The system not only exhibits
strong nonlinearities and is subject to significant uncer-
tainties in its parameters and is subject to strong per-
turbations, but also is, in fact, of distributed parameter
nature. A very good reference is [Fossen, 1994].
Various types of controllers from non-linear control

theory have been popular in this domain. [Kristiansen
and Nicklasson, 2009] presents a review of existing
methods on tight spacecraft formation flying that use
state feedback. In [Ren and Beard, 2002], an approach
for formation control using a virtual structure is pro-
posed. A back-stepping controller which is robust to
input constraints and parameter uncertainties for space-
craft formation is developed in [Lv et al., 2011].
MPC is a well-known time domain control strategy

that computes control inputs by solving finite horizon
open-loop optimal control problems in a receding hori-
zon fashion. Because of its optimization, MPC pro-
vides a rather flexible framework to digest complicated
system dynamics, and to incorporate intractable con-
straints. The importance of optimization in AUVs for-
mation control is acknowledged in [Breger et al., 2005]
where an MPC based formation controller with sens-
ing noise is developed. MPC was been widely inves-
tigated in [Mayne et al., 2000] where several applica-
tions were addressed. Underwater communication are

difficult and such constraints for AUV formation con-
trol were thoroughly addressed in [Franco et al., 2004;
Franco et al., 2008; Keviczky et al., 2006; Keviczky
et al., 2008; Fax and Murray, 2004; Saber and Mur-
ray, 2004; Kazerooni and Khorasani, 2008; Goodwin
et al., 2004; Fontes et al., 2009; Gruene et al., 2009;
Allen et al., 2002; Liu et al., 2001]. The problem of co-
operative control of a team of distributed agents with
decoupled nonlinear discrete-time dynamics and ex-
changing delayed information is addressed in [Franco
et al., 2004; Franco et al., 2008]. Building on the
work reported in [Keviczky et al., 2006], a decentral-
ized scheme for the coordinated control of formations
of autonomous vehicles is presented in [Keviczky et al.,
2008]. If feasibility of the decentralized control is lost,
collision avoidance is ensured by invoking emergency
maneuvers that are computed via invariant set theory. A
stabilization analysis can be found in [Keviczky et al.,
2006].
In [Consolini et al., 2008] a leader-follower forma-

tions of nonholonomic mobile robots is presented, in
which the control inputs are forced to satisfy suitable
constraints that restrict the set of leader possible paths
and admissible positions of the follower with respect to
the leader. [Ghommam et al., 2008] presents a virtual
structure control strategy for the coordination of mul-
tiple mobile robots using unicycle model. Other types
of formation controllers using MPC and fast-marching
methods have also been developed. In [Liang and Lee,
2006], the problem of formation control and obstacle
avoidance for a group of nonholonomic mobile robots
using MPC is considered.
A nonlinear model predictive control (NMPC) frame-

work for collision-free formation flight controller de-
sign for unmanned aerial vehicles was proposed in
[Chao et al., 2011] being the formation flight controller
designed in a distributed way. More recently, we found
applications of output-feedback MPC [Quintero et al.,
2015] where the problem of two UAVs tracking an
evasive moving ground vehicle is solved, and a com-
prehensive framework for the cooperative guidance of
fleets of autonomous vehicles relying on MPC and ad-
dressing subjects as collision and obstacle avoidance,
formation flying and area exploration [Bertrand et al.,
2014]. Path tracking model predictive control of a tilt-
rotor UAV carrying a suspended load is developed in
[Andrade et al., 2016], and the path following control
of an AUV using multi-objective model predictive con-
trol, or the nonlinear model predictive control for tra-
jectory tracking of an AUV [Shen et al., 2016].
However, all these approaches suffer from several key

drawbacks for AUVs: (i) computationally intensive na-
ture of the MPC scheme that involves solving recur-
sively a sequence of optimal control problems with
very limited onboard computation capabilities and en-
ergy; and (ii) the MPC schemes are parameterized in
order to ensure convergence and stability and, in gen-
eral, they are not related to onboard sensing capabili-
ties. Our approach addresses these issues in this article.



3 Problem formulation
The AUV formation control problem consists in con-

trolling a set of AUVs to track a trajectory while main-
taining a formation under constraints on the state, con-
trol and communications. We consider the usual model,
[Fossen, 1994] with coefficients based on the results
from [Prestero, 2001] and from our own field experi-
ments:

η̇ =

u cos(ψ)− v sin(ψ)
u sin(ψ) + v cos(ψ)

r

,

ν̇ =


τu−(m−Yv̇)vr−Xu|u|u|u|

m−Xu̇
(m−Xu̇)ur−Yv|v|v|v|

m−Yv̇
τr−(Yv̇−Xu̇)uv−Nr|r|r|r|

Izz−Nṙ

,
where η = [x, y, ψ]T , ν = [u, v, r]T , τ = [τu, τr],
the coefficients Xu̇, Yv̇ , Nṙ represents hydrodynamic
added mass, Xu|u|, Yv|v|, Nr|r| the hydrodynamic drag
and m the vehicle mass.
From the above, we are interested in control strate-

gies which, for each AUV i, i = 1, . . . , nv , minimize,
over a given time interval, the cost functional with two
terms, one that penalizes the trajectory tracking error
forcing vehicles to follow the desired path, ηir, and an-
other that penalizes the control effort, thus saving the
limited energy on board of vehicles, i.e.,∫ t+T

t

[
(ηi(s)−ηir(s))TQ(ηi(s)−ηir(s))+τ iT(s)Rτ i(s)

]
ds,

where ηi and τ i are satisfied kinematic and dynamic
constraints above, the endpoint state constraints, ηi(t+
T ) ∈ Ct+T , the control constraints, τ i(s)∈U i, the state
constraints, (ηi(s), νi(s)) ∈ Si, the communication
constraints gci,j(η

i(s), ηj(s)) ∈ Cci,j ,∀j ∈ Gc(i); and
the formation constraints gfi,j(η

i(s), ηj(s))∈Cfi,j ,∀j∈
Gf (i). For additional details, see [Gomes et al., 2011].
There is a vast body of literature on MPC, [Mayne

et al., 2000]). This is a control scheme in which the
control action for the current time subinterval – con-
trol horizon – is obtained, at each sampling time, by
solving on-line an optimal control problem over a cer-
tain large time horizon – the prediction horizon – with
the state variable initialized at the current best estimate
updated with the latest sampled value. Once the op-
timization yields an optimal control sequence, this is
applied to the plant during the control horizon. Then,
once this time interval elapses, the state is sampled and
the process is re-iterated. The MPC scheme involves
the following steps:

1. Initialization. Let t0 be the current time, and set
up the initial parameters or conditions specifying,
possibly among others, x0, T , ∆, initial filter pa-
rameters.

2. Sample the state variable at time t0.
3. Compute the optimal control strategy, u∗, in the

prediction horizon, i.e., [t0, t0 +T ], by solving the
optimal control problem (P ).

4. Apply the obtained optimal control during the cur-
rent control horizon, [t0, t0 + ∆].

5. Slide time by ∆, i.e., t0 = t0 + ∆, and adapt pa-
rameters and models as needed.

6. Go to step 2.

where x0 is the initial state, T is the prediction horizon
for control optimization, and ∆ is the control horizon.
Two key variants to this scheme are important for net-
worked systems implementation: (i) the data obtained
in step 4. usually is a composition of locally sampled
data and data communicated from other vehicles or
subsystems, and, thus, it might be of interest to replace
the data that failed to be transmitted by simulated data;
(ii) To address communication delays and missed data,
either by replacing the absent data by simulated one, or
MPC parameters may be adjusted. A typical general
formulation of the optimal control problem (P ) is as
follows:

(P ) Minimize g(x(t0 + T )) +

∫ t0+T

t0

f0(t, x(t), u(t))dt

subject to ẋ(t) = f(t, x(t), u(t)) L − a.e.
u(t) ∈ Ω L − a.e.
h(t, x(t)) ≤ 0

g(t, x(t), u(t)) ≤ 0

x(t0 + T ) ∈ Cf

where g is the endpoint cost functional, f0 is the run-
ning cost integrand, f , h, and g represent, respectively,
the vehicle dynamics, the state constraints, and the
mixed constraints, C is a target that may also be spec-
ified in order to ensure stability. If one wants to take
into account the uncertainty with respect to the initial
state, then one may consider an initial state constraint,
i.e., x(t0) ∈ Ci where Ci is an estimate of the uncer-
tainty set, being the minimization taken over the worst
case of the initial state. For a discuss stability and ro-
bustness, [Mayne et al., 2000; Langson et al., 2004;
Mayne et al., 2009]. However, problem (P) is too com-
putationally intensive for the onboard computational
resources, power consumption constraints, as well as
real-time constraints. However, this difficulty is over-
come by replacing the optimal control problem (P) by a
much smaller finite dimensional optimization that will
be described in the next section.
The decentralized character of the overall MPC con-

troller is due to the fact that each vehicle runs its
own MPC scheme (which encompasses the models of
its neighboring AUVs) and communicates only with
its neighbors. Moreover, communication delays and
packet dropouts as well as noise and disturbances can
easily be incorporated. Finally, in our decentralized
framework, each AUV runs the same type of controller.

4 Reach set MPC
The reachable set based MPC scheme we consider

here is in the context of approximating a long (possi-
bly infinite) time horizon optimization problem by a



sequence of sliding shorter time horizon finite dimen-
sional optimization sub-problems initialized with the
current sampled state. The basic idea consists in replac-
ing the infinite dimensional optimization problem by a
sequence of finite dimensional ones. This requires two
items: (i) propagation in time of the cost functional in
order to ensure consistency; and (ii) forward propaga-
tion of the reach set starting on the current value of the
sampled state variable. Notice that this formulation of
the optimization problem exhibits all the advantages in-
herent to the geometric character, namely in what con-
cerns the incorporation of additional constraints as well
as uncertainties in the dynamics.
This also enables to close the control loop since the

sampled state also reflects the effect of perturbations
in the evolution of the state trajectory. Moreover, this
scheme enables the incorporation of features of the
environment - e.g., potential static or dynamic obsta-
cles arising within the usually limited sensors detection
range - that are not present in the conventional optimal
control formulation, and, thus, in the usual associated
MPC schemes, but that are quite natural for many ap-
plication scenarios such as those involving autonomous
robotic vehicles. The key general issue underlying this
novel MPC scheme is to pre-compute off-line all the
ingredients required for the on-line (feedback synthe-
sis) that remain invariant in the course of the “mission
execution”. The next important issue involved in this
scheme consists in the mechanisms to adjust the in-
volved ingredients: the Reach Set at each (t, x) and
the short cost functional to be considered and that ap-
proximates the overall cost functional. These two in-
gredients are considered next.

4.1 Short term “equivalent” cost functional and
Reach Set

First, we consider the optimization of a dynamic con-
trol system over a very long time horizon [0, T ], with,
possibly T =∞,

(PTf
) Minimize g(x(Tf )) +

∫ Tf

0

l(t, x(t), u(t))dt

subject to ẋ(t) = f(t, x(t), u(t)), L − a.e.
x(Tf ) ∈ Cf , x(0) is given, u ∈ U ,

where U := {u : [0, Tf ] → IRm : u(t) ∈ Ω}, with
Ω closed. For T = ∞, we consider trajectories con-
verging asymptotically to some equilibrium point. For
T < Tf , the Principle of Optimality implies that the
solution to (PTf

) restricted to the interval [t, t+T] is
also a solution to (PT ) below.

(PT ) Min V (t+T, x(t+T )) +

∫ t+T

t

l(τ, x(τ), u(τ))dτ

s. t. ẋ(τ) = f(τ, x(τ), u(τ)), L − a.e.
u ∈ U , and x(t) is given,

where V (t, z) := min
u∈U,ξ∈Cf

{g(ξ)+

∫ Tf

t

l(τ, x(τ), u(τ))dτ}

with x(Tf )=ξ, x(t)=z, ẋ(τ)=f(τ, x(τ), u(τ)),L-a.e..

The value function is propagated by solving the
Hamilton-Jacobi-Bellman equation (H-J-B pde). For
details, check for example [Bardi and Capuzzo-
Dolcetta, 1997]. In general, the value function is, at
most, merely continuous, and, thus, the partial deriva-
tives have to be understood in a generalized sense, and
the solution concept has to be cast in a nonsmooth con-
text, [Bardi and Capuzzo-Dolcetta, 1997; Clarke, 1996;
Clarke et al., 1998]. The later will have to be adapted
to the nature of the solution: in a viscosity, generalized,
and proximal normal senses, for, respectively, continu-
ous, Lipschitz continuous, and lower semi-continuous
solutions. There are a number of software packages
to solve the H-J-B pde numerically and thus com-
pute the value function, see, for example, [Sethian,
1999; Michel et al., 2005; Mitchell, 2008; Cross and
Mitchell, 2008] and the associated huge computational
burden is well known.
In our framework, one or more value functions asso-

ciated with a reasonable number of typified situations
(which are strongly application dependent) are com-
puted off-line and stored in a look-up table to be stored
on-board the AUVs computers. During the execution
of the “mission” in real-time, the relevant value func-
tion is identified via sensed data or by estimation from
navigation data and invoked to determine the next op-
timal control at any point (t, x) that leads the AUV to
the optimum of the recruited value function within the
control horizon reach set.
Of course, situations may arise in which none of the

anticipated typified situations occur. Then, two possi-
bilities arise: either (i) the issue lies on “small” vari-
ations of parameters used in the typification process,
or (ii) either the variations in (i) are large, or there oc-
curs significant unexpected events, like, for example,
emergence, of obstacles. In case (i), the value func-
tion is updated by an approximation constructed with
a computationally simple linear interpolation. In case
(ii), there are two possibilities: either the control archi-
tecture (see section 5) changes the mode of operation,
or more sophisticated backward propagation using the
current value of the adjoint variable computed by using
the current conditions is used to propagate a first order
approximation of the value function on the short term
reach set. Details appear in ([Gomes, 2017]). whenever
there are changes in the environment or in the system
that affect the formulation of the underlying optimal
control problem as it follows from the general require-
ments discussed above.
Now, we introduce the Reach Set for the control hori-

zon to be used in our MPC scheme. Since the dynam-
ics of robotic are time invariant, we can easily compute
the points in the state space that can be reached in case
there are no unexpected external interferences.
Let us define the forward reach set at time t, from the

state x0 and time t0 ≤ t, [Graettinger and Krogh, 1991;
Varaiya, 1998; Kurzhanski and Varaiya, 2001], by

Rf (t; t0, x0):={x(t): ẋ=f(t, x, u), u∈U , x(t0)=x0}.



4.2 The Reach Set MPC Procedure
Without any loss of generality, we proceed with a stan-

dard change of variable that eliminates the running cost
to facilitate the presentation. Let Ṽ (t, x̃) = V (t, x)+y
where x̃ = (x, y), being ẏ = l(t, x, u) with y(0) = 0.
Without relabeling (i.e., x = x̃, and V = Ṽ ), the opti-
mal control problem (PT ) can be expressed in terms of
Reach sets and the value function as follows:

(PT ) Minimize V (t+ T, x(t+ T ))

subject to x(t+ T ) ∈ Rf (t+ T ; t, x(t)).

Let T be the optimization horizon, ∆, the control hori-
zon, and t the current time. Then, the MPC scheme can
be formulated as follows:

1. Initialization: t = t0, x(t0)
2. Solve (PT ) over [t, t+ T ] to obtain u∗

3. Apply u∗ during [t, t+ ∆]
4. Sample x at t+ ∆ to obtain x̄ = x(t+ ∆)
5. Slide time, i.e., t = t + ∆, update the Reach Set

from the new x(t) by appropriate translation and
rotation, update the value function at the new t+T
if necessary, and goto 2.

It is clear in this scheme that the computational bur-
den in real-time is extremely low, particularly, when
comparing with the conventional MPC schemes. Un-
der mild assumptions on the data and, by using the fact
that the value function is continuous, it has been shown
that this scheme is robust. Stability is proved by show-
ing that there exists an uniform neighborhood along the
reference trajectory for which there exists a control for
which the value function satisfies a Lyapunov inequal-
ity in a generalized sense. From the continuity of the
value function, we obtain sub-optimality estimates in
both global and local senses as stated in the asymptotic
performance convergence result below. To state this
result, we require some notation. Let T , and ∆, be, re-
spectively, the optimization and control horizons, and
denote by (x∗T,∆, u

∗
T,∆) the associated MPC optimal

control process. Let J(x, u) be the value of the cost
functional associated with the (x, u) over [0,∞), by
J(x, u)|[α,β] be its restriction to the interval [α, β], and
by Jk(x, u) its restriction to the interval [k∆, (k+1)∆].
Proposition 1. Let Tf = ∞ and assume that the op-
timal control horizon has an optimal control process
(x∗, u∗) such that lim

t→∞
x∗(t) = ξ∗, being ξ∗ an equi-

librium point in C∞. Then,

(i) lim
∆↓0,T↑∞

∞∑
k=1

Jk(x∗T,∆, u
∗
T,∆) = J(x∗, u∗)

(ii) lim
k→∞

∣∣Jk(x∗T,∆, u
∗
T,∆)−J(x∗, u∗)|[k∆,(k+1)∆]

∣∣=0.

The simplicity of the optimization problem is appar-
ent due to the complexity of the Reach Set computa-
tion. However, the invariance of the dynamics allows
the pre-computation off-line of an approximation - ei-
ther polygonal or pointwise - of Rf (t0 + T ; t0, x0) as
depicted in the figure 1 and store it in the AUV onboard
computer.

Figure 1. AUV forward reach set
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Figure 2. AUV value function computation example
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Figure 3. AUV optimal control lookup table example

Since the points of the state space that can be reached
by the AUV from some reference position at a given
time depend solely on the reference position and on the
orientation at that time, the computation of the Reach-
able Set along the trajectory can be obtained by trans-
lations and rotations ofRf (t0 + T ; t0, x0).
As an example, we present in figure 2 the computed

value function for an AUV in an area where the target
point to which the system must be steered is (0, 10).
The value function was pre-computed by solving sev-
eral off-line optimal control problems with different
initial conditions spread across a state space partition
as illustrated in figure 3. Here we can observe all the
trajectories starting from the partition and converging
to the final target. The value function for each trajec-
tory is plotted at the beginning of the trajectory. For the
sake of accuracy an interpolation to a thinner partition
was calculated giving rise to the map in figure 2.
The next step involves overlapping the forward Reach

Set with the value function map and finding the mini-
mum value leading to the controls to be applied to the
vehicle.
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Figure 5. Reach set obstacle avoidance control architecture

5 The Control Architecture
Given the high variability of the environment due to

expected and unexpected events, the overall control
system requires to enter with an appropriate degree of
situational awareness, being the articulation provided
by the Control Architecture (CA). The issues concern-
ing the perception system fall outside the scope of the
current article, and, thus, we just illustrate the way the
proposed MPC scheme, by taking into account onboard
sensing devices, accommodates unexpected significant
events in the context of the CA.
As depicted in figure 4, an obstacle is detected by the

motion supervisor whenever it falls within the cone of
the range sensor. In the CA diagram depicted in fig-
ure 5, its clear that the AUV proceeds with its motion
generated by the MPC scheme while the obstacle is not
detected. Once this event happens, the motion super-
visor switches to an exploration mode in order to find
the optimal way to circumvent the obstacle by taking
into account the original final target. In this process,
the pre-computed value function is used and, once the
exploration activity is successfully terminated, a new
path from there on to the original final target is re-
planned. Mind you that, a priori, the value function in
the state space region after circumvention of the obsta-
cle remains exactly as the one pre-computed off-line.
In figure 6, an illustration of an hypothetic behavior re-

A

B

Obstacle

Explore
Mode

Online
Replanning

Figure 6. Reach set obstacle avoidance tracking example

Figure 7. The overall simulation environment for AUV formation
control with an obstacle

sulting from the CA is shown. A simple example il-
lustrating the proposed scheme in controlling a trian-
gle formation of AUVs which avoid the collision with
an unexpected obstacle detected by their range sensors
while mitigating the extent of the distortion of their for-
mation pattern can be seen in figure 7.

6 Conclusions
In this article, we introduced a novel MPC scheme

that enters into account the specific requirements that
arise in the coordinated control of multiple AUVs. The
key driver of the approach concerns the mitigation of
the real-time computational burden for two strong rea-
sons: onboard limited energy, computational power,
and communication capabilities. The mathematical de-
tails were strongly omitted due to the lack of space.
However, the simulation results obtained so far are ex-
tremely encouraging, being the next step the migration
for this control structure for the AUV onboard control
software for the required field testing.
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