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Abstract  
A reduced order model for the nonlinear vibration 

analysis of a thin-walled, simply-supported circular 

cylindrical shell based on the use of a standard 

perturbation procedure and on the proper orthogonal 

decomposition is derived. First, using Donnell 

shallow shell nonlinear equations of motion, a modal 

solution is obtained by a perturbation technique 

leading to a multi-mode solution that captures the 

inherent modal coupling, thus describing correctly 

the nonlinear modes of vibration, and satisfies all 

boundary and continuity conditions. Based on this 

solution, the proper orthogonal modes and values are 

obtained, identifying the most important modes in the 

modal expansion. Then, different reduced models are 

derived and used to analyze the vibrations and 

resonance of the shell under a harmonic lateral 

pressure. 
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1 Introduction 

  The quest for reliable reduced order models in the 

nonlinear dynamic analysis of continuous systems 

has been an active research area in recent years. 

Traditional perturbation techniques, the method of 

normal forms and the proper orthogonal 

decomposition based on the Karhunen-Loeve method 

are among the most efficient tools for the 

dimensional reduction of dynamical systems. 

Traditionally the analysis of continuous nonlinear 

systems has been performed by the use of nonlinear 

finite element formulations. However an efficient 

analysis usually requires a refined mesh, leading to a 

large number of degrees of freedom, and also a small 

time step is necessary to obtain a reliable time 

response. For example, to obtain a precise critical 

load for a cylindrical shell under static load hundreds 

of degrees of freedom are necessary and even more 

to obtain a dynamic nonlinear response. So it is 

prohibitive to perform a detailed parametric analysis 

of nonlinear continuous systems using a FE software. 

An alternative is to use a low-dimensional model. 

However, several examples found in literature shows 

that the usual technique of approximating the non-

linear displacement field by a series of linear 

vibration modes may lead in some cases to incorrect 

responses for their incapacity to describe the 

nonlinear vibration modes or may require a large 

number of modes (although less than the FE) to 

obtain a quantitatively precise response. Recently, a 

lot of attention has been paid to reducing the cost of 

the nonlinear state solution by using reduced-order 

models for the state. Particularly in solid and fluid 

mechanics this has become a very attractive research 

field, enabling a deeper understanding of complex 

nonlinear systems. The most common approaches are 

the use of nonlinear normal modes [Shaw and Pierre, 

1993], proper orthogonal decomposition based on 

Karhunen-Loève method [Steindl and Troger, 2001] 

and centroidal Voronoi tessellations [Burkardt et al., 

2006]. Recently, Rega and Troger (2005), in an 

article that introduces a special issue of the journal 

Nonlinear Dynamics on reduced-order models have 

analyzed the most common methods of dimension 

reduction in nonlinear dynamics with emphasis on 

applications in mechanics. The aim of these methods 

is to choose a reduced basis ui, i=1,…,n, where n is 

small compared to the usual number of functions 

used, for example, in a finite element approximation 

or in a traditional Galerkin model. It is clear that the 

reduced basis should be chosen so that it contains all 

the features, e. g., the dynamics of the states 

encountered during the simulation. It requires some 

intuition about the states to be simulated. If the 

reduced-order model is properly selected, it should 



                                                    

work in an interpolatory setting, but it is not clear 

what happens in an extrapolatory setting. One cannot 

hope to determine one reduced-order model capable 

of describing the response of a complex system for 

all sets of parameters. So, depending on the 

complexity of the systems, various reduced-order 

models optimized for different sets of parameters 

should be derived. However, one hopes that a single 

reduced basis can be used for several state 

simulations or in several design settings. In the 

present work a standard perturbation technique is 

used together with the POD to obtain an efficient 

reduced order model, which is then employed to 

analyze the non-linear vibrations and instabilities of a 

thin-walled circular cylindrical shell under the action 

of a harmonic lateral pressure. 

 

2 Mathematical Formulation 

2.1 Shell Equations 

 

Figure 1 – Shell geometry and coordinate system 

 
  Consider a cylindrical of radius R, thickness h and 

length L, made of a linear elastic material with 

Young’s modulus E, Poisson coefficient υ  and mass 

density ρ. The three displacement components u, v 

and w are related to the cylindrical co-ordinate 

system x, θ and z, as shown in Figure 1. 

  For an isotropic shell the constitutive law is given 

by: 
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The shell deformations at an arbitrary point are given 

in terms of the middle surface strain and change of 

curvature components by: 

 

θθθ

θθθ

χγγ

χεε

χεε

xxx

xxx

2+=

+=

+=

 (2) 

 

  These middle surface quantities are given in terms 

of the displacement components, according to 

Donnell shallow shell theory, by: 
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  The shell is subjected to a harmonic lateral pressure 

of the form: 
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where P is the pressure magnitude in N/m²; n and m 

are, respectively, the number of waves in the 

circumferential direction and the number of half-

waves in the axial direction, ω is the excitation 

frequency and t is time. 

  The nonlinear equations of motion, considering only 

the transversal inertia and damping forces, are given 

in terms of the force and moments resultants by: 
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where the force and moments resultants are obtained 

by the integration of the stress components along the 

shell thickness as follows: 
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  For a simply-supported shell, the following 

boundary conditions must be satisfied: 

 

( ) ( ) 0,,0 == θθ Lvv  (7) 

( ) ( ) 0,,0 == θθ Lww

 

(8) 

( ) ( ) 0,,0 == θθ LMM xx

 

(9) 

( ) ( ) 0,,0 == θθ LNN xx

 

(10) 

 

  The boundary condition (10) is a nonlinear 

boundary condition when written in terms of the 

displacements, that is: 
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  The displacement field, in this work, is also 

required to satisfy the following conditions: 

 

( ) 0,2 =θLu
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( ) ( )π2,0, xvxv =

 

(13) 

 

  In the foregoing, the following non-dimensional 

parameters have been introduced: 
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  Here ωo is the lowest natural frequency of the 

empty shell and Pcr is the classical static critical 

lateral pressure of the shell. 

2.2 General solution of the shell displacement field 

by a perturbation procedure and determination of 
the in-plane displacements u and v 

  The numerical model is developed by expanding the 

transversal displacement component w in series in the 

circumferential and axial variables. From previous 

investigations on modal solutions for the non-linear 

analysis of cylindrical shells under axial loads [Hunt 

et al. 1986; Gonçalves and Batista, 1988; Gonçalves 

and Del Prado, 2002; Awrejcewicz and Krys’ko, 

2003] it is observed that, in order to obtain a 

consistent modeling with a limited number of modes, 

the sum of shape functions for the displacements 

must express the non-linear coupling between the 

modes and describe consistently the unstable post-

buckling response of the shell as well as the correct 

frequency-amplitude relation. 

  Based on a perturbation procedure [Gonçalves and 

Del Prado, 2005], the lateral deflection w can be 

described as: 
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  By imposing the boundary conditions (8) and (9), 

and by retaining in (15) the number of modes 

necessary to achieve converge up to very large 

deflections, one obtains for the transversal 

displacement [Gonçalves et al., 2007]: 
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  The in-plane displacements u and v are obtained by 

substituting (16) into the in-plane equilibrium 

equations (5.a) and (5.b) and solving the system of 

linear partial differential equations in u and v and 

imposing the relevant boundary, symmetry and 

continuity conditions. Based on this procedure one 

selects the necessary number of in-plane modes and 

write their modal amplitudes in terms of the modal 

amplitudes ijζ in (16) [Gonçalves et al. 2007]. It is 

important to notice that the harmonic terms in the 

modal expansion for u and v derived by this 

procedure are similar to those derived by the 

perturbation procedure. Finally, by substituting the 

adopted expansion for the transversal displacement w 

together with the obtained expressions for u and v 



                                                    

into the equation of motion in the transversal 

direction, Eq. (5.3), and by applying the standard 

Galerkin method, a consistent discretized system of 

ordinary differential equations of motion is derived. 

2.3 Reduction of the problem by Karhunen-Loève 
decomposition 

  In order to construct a theoretically well founded 

low-dimensional model, it is important to identify the 

relative importance of each mode to the total energy 

of the system as a function of the vibration amplitude 

and the participation of each term of the modal 

expansion (16) in the nonlinear vibration modes. 

Also, the modal basis may contain redundant 

information in the sense that the dynamics of the 

system can be approximated with accuracy by a set 

of functions of much lower dimension. 

  One way of solving this problem is to use the 

Karhunen-Loève method also known as proper 

orthogonal decomposition (POD). Various 

applications of the POD method for the reduced-

order modeling of complex systems can be found in 

literature [Steindl and Troger, 2001; Rega and 

Troger, 2005; Amabili et. al., 2006]. The POD 

method is based on the analysis of a series of 

snapshots of the system response obtained from a 

high-fidelity solution of the mathematical model. 

Experimental data have also been used to determine 

the snapshot sets. A detailed mathematical 

formulation of the Karhunen-Loève method can be 

found, for example, in Sirovich [1987a, b, c] and 

Bellizzi and Sampaio [2006]. In this work the so-

called direct method is employed. 

  The continuous displacement field at a certain 

instant is approximated by a discrete field. To obtain 

a vector field representative of the shell 

displacements, the surface of the shell is discretized 

and the displacements are evaluated at NT spatial 

points uniformly spaced along the x and θ axis, as 

follows: 
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where w*
 is the vector of the components of the 

transversal displacements measured at each point (xi, 

θj) using (16). The modal time-dependent amplitudes 

ζij(t) in (16) are obtained by the solution of the 

discretized equations of motion of the shell. So, for 

each time interval a vector with nx x nθ = NT  

elements ordered as )(,),( **
1 twtw

TNK  is obtained. 

Taking M snapshots at τmtm =  ( Mtt ,,1 K ), where 

τ is the sampling period, which must be greater than 

the correlation time, the following ensemble matrix 

of dimension TNM ×  is obtained: 
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where each column represents the temporal variation 

of the displacement at a certain point in space and 

each row represents the displacement field at a 

certain instant tm. 

  Using the ergodicity hypothesis, the mean value of 

the field is obtained by summing all components of 

w* and dividing the result by the number of rows M. 

The variation of the field with respect to the mean 

value of each row is obtained by: 
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  Finally, using again an ergodicity assumption, the 

spatial correlation matrix can be written as follows: 

 

( ) ( )**1
vvR T

M
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where R is a symmetric, positive-definite matrix. 

  The eigenvectors of (20), which are orthogonal due 

to its symmetry, are the POMs and the associated 

eigenvalues, the POVs. An eigenvalue (POV) has the 

interpretation of giving the mean energy of the 

system projected on the associated eigenvector-axis 

in function space [Sirovich, 1987a, b, c]. The mean 

energy of a flow should therefore be equal to the sum 

of the eigenvalues. 

  Using the eigenvalues and eigenvectors of the 

spatial correlation matrix, the dynamics of the 

original system can be reconstructed as: 
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where ( )θϕ ,xk  is the k-th eigenvector and ( )tak  

is the k-th coefficient which is a function of the 

temporal dependence and is defined as: 

 

( ) ( ) ( )θxθxv ,,,,*
kk tta ϕ=  (22) 



                                                    

3 Numerical Results 

  Consider a cylindrical shell of radius R = 0.2 m, 

length L = 0.4 m and thickness h = 0.002 m. The 

shell material has the following properties: E = 2.1 x 

10
8
 kN/m², υ = 0.3 and ρ = 7850 kg/m³. For this shell 

geometry the lowest buckling load as well as the 

lowest natural frequency are obtained for m=1 and 

n=5 [Gonçalves and Del Prado, 2005]. These values 

will be used throughout the present numerical 

analysis. 

  In Figure 2 the frequency-amplitude relation obtain 
with expansion (16) – which includes ten modes of 

the complete solution (15) and gives a precise 

solution up to very large deflections – is compared 

with three different approximations: one using the 

first two POMs, the second using the first three 

POMs and the third using a single DOF model. The 

time-dependent modal amplitudes )(tijζ  are, in each 

case, exactly obtained by the use of the shooting 

method [Seydel, 1988]. 

  The single DOF model is obtained based on the 

perturbation technique which shows that the higher 

order modal amplitudes ijζ  can be in fact considered 

as slave co-ordinates and written as a polynomial 

function of the amplitude of the seminal mode 11ζ  

[Gonçalves and Del Prado, 2005]. For the shell under 

consideration, these relations are given by: 
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As shown in Figure 2, all reduced models are 

capable of describing the frequency-amplitude 

relation up vibration amplitudes of the order of the 

shell thickness. For vibration amplitudes of the order 

of two times the shell thickness, there is a small 

difference between the reduced models, but all 

approximations are still reasonably good and capture 
the type and degree of non-linearity of the response. 

  One cannot hope to determine one reduced-order 

model capable of describing the response of a 

complex system for all sets of parameters. However, 
it is expected that the present model can be 

successfully used to study the forced response of the 

shell and identify the relevant bifurcations within this 

range of amplitude and be as precise as the response 

obtained using the modal expansion (16). 
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Figure 2 – Frequency-amplitude relation for the 

cylindrical shell. Softening behavior. 
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(a) Γ = 0.50 
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(b) Γ = 1.0 

Figure 3 – Frequency-response curves (maximum 

lateral deflection versus excitation frequency) for 

increasing values of the magnitude of the external 

lateral pressure, Γ. (β1 = 2ερhω0 with ε = 0.001). 
Solid line: stable. Dashed line: unstable. 

 

  Figure 3 shows the resonance curve of the shell 

subjected to a lateral pressure, as described by 

equation (4). The magnitude of the load is in Fig. 



                                                    

(3.a) equal to 50% of the static critical load of the 

shell under a uniform lateral pressure (Γ = 0.50), 

while in Fig. (3.b) the load magnitude is equal to the 

critical load Γ = 1.00. These load levels are of course 
well beyond the values expected in normal 

engineering applications, but shows the quality of the 

selected reduced order models. For Γ = 0.50, all 
models agree up to the maximum vibration 

amplitude, with only a small difference in the upper 

fold point for the model using two POMs. For 

Γ = 1.00, a limit case, the reduced order models show 

good agreement up to vibration amplitudes of the 

order of the shell thickness but lead to slightly less 

softening responses for higher vibration amplitudes. 

4 Conclusion 

In the present paper, Donnell shallow shell theory has 

been applied to model the dynamics of a thin-walled 

circular cylindrical shell under lateral pressure. Based 

on a modal solution obtained from perturbation 

techniques, a general solution for the displacement 

field is obtained satisfying all boundary, symmetry 

and continuity conditions of a simply-supported 

shell. The discretized shell equations are solved and 
non-linear frequency-amplitude relation is obtained. 

Then, the Karhunen-Loève method is employed to 

obtain the proper orthogonal modes and values. This 

procedure allows the quantification of the influence 

of each mode of the perturbation solution on the 

convergent response of the shell. The results also 

corroborate the coupling between asymmetric and 

symmetric modes. Based on this analysis, three 

different reduced order models are derived and 

compared. The results show that a small number of 

properly selected modes can describe the nonlinear 

behavior of the shell up to very large deflections. 
Finally, the results show that this technique can be 

used to derive consistent low-dimensional models for 

the non-linear static and dynamic analysis of 

cylindrical shells. It can also be extended to other 

structural components such as beams and plates, 

leading to efficient and well-founded low-

dimensional models. 
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