
ON EFFICIENCY OF THE GRID OPTIMAL
SYNTHESIS TO CONTROL PROBLEMS OF

PRESCRIBED DURATION

Nina N. Subbotina
Institute of Mathematics and Mechanics
S.Kovalevskaja Street 16
620219 Ekaterinburg
Russia
e-mail: subb@uran.ru

Timofey B. Tokmantsev
Institute of Mathematics and Mechanics
S.Kovalevskaja Street 16
620219 Ekaterinburg
Russia
e-mail: tokmantsev@imm.uran.ru

The subject of the paper is estimation of new method for constructing feed-
backs. The researches follow to N.N. Krasovskii [4,5] formalization of feedbacks.

We consider optimal control problems of prescribed duration on the plane. Dy-
namics of controlled systems are nonlinear. Values of controls are restricted
by geometrical constrains. Running cost functionals of the Bolza type are min-
imized along trajectories of the systems on time intervals of prescribed duration.

A new numerical method for solving optimal control problems of prescribed du-
ration is suggested. It based on a generalization of the method of characteristics
for the Hamilton – Jacobi – Bellman equation. The data of problems are as-
sumed to be Lipschitz continuous. Constructions of optimal grid synthesis are
provided and numerical algorithms are created. Efficiency of the algorithms is
discussed. Estimations for difference between the optimal result and the result
of control via suggested grid synthesis are obtained. Examples of solving model
problems on the plane are exposed to illustrate the work of algorithms and to
compare results of the new method with other known methods.
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Statement of the problem

We consider a controlled system:

ẋ(t) = f(t, x, u), u ∈ P, t ∈ [0, T ], x ∈ Rn, (1)
x(t0) = x0, (t0, x0) ∈ [0, T ]× Rn = cl ΠT ,

where control u belongs to the given compact set P ⊂ Rm, a time interval [0, T ]
is fixed. The set Ut0,T of admissible controls is

Ut0,T = {u(·) : [t0, T ] 7→ P — is measurable}.

Consider the cost functional of the form:

It0, x0(x(·), u(·)) = min
θ∈[t0,T ]

{σ(θ, x(θ; t0, x0, u(·))) +

t0∫
θ

g(t, x(t), u(t))dt}, (2)

where x(·) = x(·; t0, x0, u(·)) : [t0, T ] 7→ Rn is a trajectory of the system started
at the state x(t0) = x0 under an admissible control u(·). We define the optimal
result as follows:

V (t0, x0) = inf
u(·)∈Ut0,T

It0, x0(x(·; t0, x0, u(·)), u(·)), (3)

The function cl ΠT 3 (t0, x0) 7→ V (t0, x0) ∈ R is called the value function of the
problem (1)–(3).

Assumptions

We consider the problem (1)–(3) under the following assumptions on the data.
A1. Functions f(t, x, u) and g(t, x, u) in (1), (2) are defined and continuous on
the set cl ΠT × P ,

||f(t′, x′, u)− f(t′′, x′′, u)|| ≤ L1(|t′ − t′′|+ ||x′ − x′′||),
|g(t′, x′, u)− g(t′′, x′′, u)| ≤ L1(|t′ − t′′|+ ||x′ − x′′||),

where L1 > 0, (t′, x′), (t′′, x′′) ∈ cl ΠT , u ∈ P .
A2. The extendibility conditions hold

||f(t, x, u)|| ≤ K1(1 + ||x||), |g(t, x, u)| ≤ K1(1 + ||x||),

where K1 > 0, (t, x, u) ∈ cl ΠT × P .
A3. The function σ(t, x) in (2) is defined and continuous on R × Rn, for any
(t, x) ∈ cl ΠT there exists the superdifferential ∂σ(t, x):

∂σ(t, x) = {(a, p) ∈ R× Rn : ∀(t+ ∆t, x+ ∆x) ∈ Bε(t, x)
σ(t+ ∆t, x+ ∆x)− σ(t, x) ≤ a∆t+ < p,∆x > +o(∆t+ ∆x)},

where o(∆t+ ∆x)/(∆t+ ∆x)→ 0, as ∆t+ ∆x→ 0, and

∃L2 > 0 : α+ p ≤ L2 ∀(α, p) ∈ ∂σ(t, x).
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Here 〈·, ·〉 is inner product.
A4. For all (t, x) ∈ cl ΠT , p ∈ Rn, the set

Arg min
(f,g)∈E(t,x)

[〈p, f〉+ g] = {(f0(t, x, p), g0(t, x, p))}

is assumed to be a singleton. Here the set

E(t, x) = {(f(t, x, u), g(t, x, u)) : u ∈ P}.

Preliminaries

It is known that assumptions A1–A4 in the problem (1)—(3) provide for the
value function V (t, x) (3) local Lipschitz continuity with constants LV = LV (D) >
0, D ⊂ cl ΠT . At any point (t, x) ∈ ΠT there exists the superdifferential
∂V (t, x) [3, 9]. The value function V (t, x) coincides with the unique mini-
max/viscosity solution [1, 8] of the Cauchy problem for the Bellman equation

∂V (t, x)/∂t+ min
u∈P

[〈DxV (t, x), f(t, x, u)〉+ g(t, x, u)] = 0, (t, x) ∈ ΠT , (4)

V (T, x) = σ(T, x), ∀x ∈ Rn, (5)

with the additional restriction

V (t, x) ≤ σ(t, x), ∀(t, x) ∈ cl ΠT . (6)

Here

DxV (t, x) = (
∂V (t, x)
∂x1

, . . . ,
∂V (t, x)
∂xn

).

Generalized method of characteristics

As follows from assumptions A1–A4, the Hamiltonian in problem (1)–(3) has
the form

H(t, x, p) = min
u∈P
{〈p, f(t, x, u)〉+ g(t, x, u)} = 〈p, f0(t, x, p)〉+ g0(t, x, p),

and the relations hold
DpH(t, x, p) = f0(t, x, p),

〈p,DpH(t, x, p)〉 −H(t, x, p) = −g0(t, x, p),

where (f0(t, x, p), g0(t, x, p)) ∈ E(t, x). The Hamiltonian is Lipschitz continu-
ous relative to (t, x) and continuous in the whole space. It is well known that
a Lipschitz continuous function is differentiable almost everywhere (see, for ex-
ample, [3]).
To generalize classical characteristic system of ODEs we involve the Clarke’s
superdifferential with respect to variable x [3]:

∂cl
xH(t, x, p) = co

{
lim
xi→x

DxH(t, xi, p)
}
,
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where (t, xi, p) are the points of differentiability. We introduce generalized char-
acteristics for the Bellman equation as solutions of the characteristic differential
inclusions 

dx̂
dt = Dp̂H(t, x̂, p̂) = f0(t, x̂, p̂),
dp̂
dt ∈ −∂cl

x̂H(t, x̂, p̂),
dẑ
dt = 〈p̂, Dp̂H(t, x̂, p̂)〉 −H(t, x̂, p̂) = −g0(t, x̂, p̂).

(7)

Due to the boundary condition (5) and restrictions (6) for the value function
the following boundary conditions arise:

x̂(T, y) = y, p̂(T, y) ∈ ∂yσ(T, y), ẑ(T, y) = σ(T, y), y ∈ Rn, (8)
min

x̂(t,y∗)=x
ẑ(t, y∗) = σ(t, x)⇒ p̂(t, y∗) ∈ ∂yσ(t, x). (9)

Definfition. 1 Absolutely continuous functions

x̂(·, y), p̂(·, y), ẑ(·, y) : [0, T ]→ Rn × Rn × R

satisfying the Hamiltonian differential inclusions (7) and the boundary condi-
tions (9) are called generalized characteristics for the Bellman equation (4).

It is known [3, 7], that necessary optimality conditions in the problem (1)–(3)
can be expressed in the form of differential Hamiltonian inclusions. It means
that extremals and coextremals for any initial point (t0, x0) ∈ cl ΠT can be
considered as generalized characteristics (7)–(9) crossed at the initial point.
The following theorems are proven [9, 10]

Theorem 1 If conditions A1–A4 are satisfied in the problem (1)–(3), then the
value function (t0, x0) 7→ V (t0, x0) has the representation

V (t0, x0) = min
{
σ(t0, x0), min

y∈Rn : x̂(t0,y)=x0

ẑ(t0, y)
}
, (10)

where (x̂(t0, y), p̂(t0, y), ẑ
(
t0, y)

)
are generalized characteristics (7, 9).

Theorem 2 If conditions A1–A4 are satisfied in the problem (1)–(3), then the
optimal synthesis u0(t, x) : cl ΠT 7→ P can be defined as follows

(−H(t, x, p∗), p∗) ∈ ∂V (t, x), H(t, x, p∗) = 〈p∗, f0(t, x, p∗)〉+ g0(t, x, p∗),

(f0, g0) =
(
f0(t, x, p∗), g0(t, x, p∗)

)
∈ E(t, x),

u0(t, x) ∈ Arg
u∈P
{f(t, x, u) = f0, g(t, x, u) = g0}.

These facts are the basis of numerical algorithms for solving the optimal control
problem (1)–(3). The new numerical method consists of a backward proce-
dure of integrating generalized characteristic system and applying theorems 1–2
to construct a numerical approximation of the value function and an optimal
grid synthesis u0

∗(·) on adaptive current grids. Nodes of the grids are points
(x̂ji , p̂

j
i , ẑ

j
i ) on the generalized characteristics at instants ti of a time partition

Γ = {t0 < t1 < . . . < tN = T} ⊂ [0, T ].
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Estimations

Estimations of the method is the important problem [6]. Following to N.N.
Krasovskii [5] let us define the cost C̃t0,x0

(
Γ;u0

∗(·)
)

of the grid feedback u0
∗(ti, x̂

j
i )

C̃t0,x0

(
Γ;u0

∗(·)
)

= It0,x0

(
xΓ(·), uΓ(·)

)
uΓ(t) = ui−1 = u

(
ti−1, xΓ(ti−1)

)
= const ∀t ∈ [ti−1, ti),

ẋΓ(t) = f
(
t, xΓ(t), ui−1) ∀t ∈ [ti−1, ti), ti ∈ Γ, i = 1, . . . , N.

The following estimates hold for difference between the optimal result V (t0, x0)
and the cost C̃t0,x0

(
Γ;u0

∗(·)
)

of grid feedback u0
∗(ti, x̂

j
i )

|V (t0, x0) − C̃t0,x0

(
Γ;u0

∗(·)
)
| ≤ C1∆t + C2∆tω(F∆t) + C3∆x + C4,

where F,C1, C2, C3, C4 are constants, C4 = 10−7, ∆t is a diameter of Γ, ∆x
is a diameter of adaptive grids in the phase space and ω(·) is the modulus of
continuity of functions p 7→ f0(t, x, p), p 7→ g0(t, x, p) defined in A4.

Example

Dynamics

ẋ1 = x2, ẋ2 = − sinx1 + u, ‖u‖ ≤ 1; t ∈ [0, 3.0].

The payoff functional

It0, x0

(
x(·), u(·)

)
= min
θ∈[t0,3.0]

{ (x1 − sin θ)2 + (x2 − cos θ)2

2
+θ2−

θ∫
t0

√
1− u2(t)dt

}
.

The Hamiltonian is H(x, p) = p1x2 − p2 sinx1 −
√
p2

2 + 1. The characteristic
system 

dx̂1
dt

= x̂2,
dx̂2
dt

= − sin x̂1 − p̂2√
p̂2

2 + 1
,

dp̂1
dt

= p̂2 cos x̂1,
dp̂2
dt

= −p̂1,
dẑ
dt

= 1√
p̂2

1 + 1
.

Boundary conditions

x̂1(3.0, y) = y1, x̂2(3.0, y) = y2,

p̂1(3.0, y) = y1 − sin 3.0, p̂2(3.0, y) = y2 − cos 3.0,

ẑ(3.0, y) =
(y1 − sin 3.0)2 + (y2 − cos 3.0)2

2
+ (3.0)2,

ẑ(t, y) =
(x̂1 − sin t)2 + (x̂2 − cos t)2

2
+ t2 ⇒

{
p̂1(t, y) = x̂1 − sin t,
p̂2(t, y) = x̂2 − cos t.
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Parameters of approximation ∆x = 0.04, ∆t = 0.01.

The graphs of Ṽ (t, x) and It, x
(
x̃(·), ũ(·)

)
at instant t = 0.
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