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Abstract—We derive the discrete maps to describe the laserj=2,1in the delayed momert;u;(t—1). In general
dynamics of coupled laser diodes. The maps allow us to find cgse the Coup"ng coefficients are not equaLd{_ﬁ# ar.

analytically regions of parameters and initial conditions in The peculiarity of the svstem is that for laser diodes
the functional phase space corresponding spiking with desired P Y y

stable (or nearly stable) phase shift. The method developed @S Well as for_ class B lasers the parametes the large _
is promising for further discussion of controlled switching parameter while other parameters are of the order of unit.

between periodic states by a injection signal. As a result, relaxation oscillations in the form of short width
spikes are observed in wide parameter regions. Numerical
. INTRODUCTION integration of equations (1) shows that spiking is realized in
Synchronization of delay-coupled oscillators are undefarious forms including periodic, quasi-periodic and chaotic
permanent studying in networks of various configurationgnes. Constant phase shift between pulses of different lasers
Phase synchronization for which stable temporal shift exists observed mainly for periodic regimes. Below we find
between oscillations of the elements has been experimentafiynditions for such regimes.
observed in biological networks as well as in artificial Equations (1) with a delayed argument compound a dy-
networks for communications systems [1]. In laser systeMgmical system in infinite dimensional (functional) phase
complete synchronization, lag and anticipate synchronizgpace_ In addition, Egs.(1) are singular perturbed as1.
tion [2]- [4], antiphase and splay states [5] have beefiy study relaxation oscillations in the system we apply the
discussed for semiconductor lasers coupled through uni- 8Eymptotic method developed in [6]. Let choose the set
bi-direc_tional optoelectronic feedback. o S(&) depending on the vector parametéras the set of
In this paper we concentrate on synchronization of repjtjal conditions. It is possible then to construct uniform
laxation oscillations of two identical laser diodes couplesymptotic approximations of solutions taking into account
through pump injection current with finite time of signalihe |arge parameter and to show that after a certain time the
propagation. We demonstrate numerically delay inducegb|ytion again falls withirS(€). Thus, the Poincare operator
multistability of various spiking regimes and describe analytyf the shifting along the trajectories which mapsrom S
ically the initial conditions and the regions of parameters prognto & that is also fromsS, is thereby analytically defined,
viding phase synchronization. Additional impulse variatiorg — f(). To an attractor of the operator there corresponds
of the pumping rate provides switching between coexisting staple spiking solution of a similar structure to the original
attractors and we propose the method of calculation of ”’s%/stem. In particular, a fixed point in the map corresponds
optimal parameters of such an external force. to the periodic spiking and so on. Thus for each type of
Il. MODEL synchronization one can determine special initial conditions

. ) . and construct the map with attractors (if exist) guarantee
Consider the system of single-mode rate equations for t"‘Q/nchronized (in some sense) dynamics.
coupled semiconductor lasers taking into account the delay

time t of signals in coupling circuit:
[1l. SLOW OSCILLATING REGIMES

du

e y-1), Note, first of all, that complete synchronized solution is
dy, unstable undev — . That is why we consider further spikes
i a-Yi(1—u)+ajuj(t—1), (1) follow each other in finite time intervals.

whereu; andy; are proportional to the photon density in the We call the solution slow (fast) oscillating if spikes of two

cavity and the population inversion in lasées 1,2, v is the lasers alternate in time intervalg larger (smaller) than the

ratio of photon damping time in the cavity to the relaxatiorfMe delayT. The examples of slow oscillating regimes are

time of inversion of population. The pumping rate has th@Ven in Fig. 1. Three solutions (a) - (c) are the resuits of
constant parg which is determined by constant injectionnumer'cal integration of the Eqgs.1 with the same parameters

current and has the part modulated by the intensity of anothBy't under different initial conditions, hence, multistability
of spiking takes place. In Fig. 1(a) slow oscillating spikes
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100T @ and for the moment =0
u1(0) =1, ux(0) =explvm < 1, m<O0. 4)

The initial conditions given mean the light intensities of

501 | both lasers are supposed to be (asymptotically) small on the

interval of the delayse [—1,0), 0 < hi(s) < 1, 0< hy(s) <

1, but not small forl-laser ats=0. It is possible to prove that

the width of spiked = O(v~1), hence,d — 0 underv — .

Hereafter all formulae are valid with an accura@yv—1).

50 ©1 52 53 54 25 5@ Integrating asymptotically under — c system (1) with

initial conditions (2)-(4) we get that in time interval the

40T original situation (2)-(4) appears again with replacing the

(b) laser numbers (indexék 1« 2 and change vector parameter
¢ = (c,cp,m) — & = (C1,Cp,m) determined by the three
dimensional map

Intensities ul and u2

201 G = q+(c2—q+pae’)e,

¢ = q+(a—q-pe’, )

m = (9-1)T+(a-q-p)(1-€e7),

, with a = a; and a = a, for odd and even iterations,

56 respectively. The functiop = p(c;) characterizes the energy
of the pulse and it's value can be found as positive root of

20+ the equation

(c)

Intensities ul and u2

ci—p=cie P (6)

The function T = T(cy,cp,m) characterizes time interval
between two consequent spikes of two lasers, it's value can

107 be found as the first positive root of the equation

m+ (- DT +(c2—q) (1—e 7))+
. 1—e ") =o0. 7

50 51 - 5'2 53 1!';4 555G If attractors of the map (5)-(7) exist and for each iteration
Time in units of time delay of the map the conditions

Intensities ul and u2

. o . T>1,m<0,c>1 c<c (8)
Fig. 1. Coexisting spiking in system (1) for the pumping rate 1.5, the

time gezlay in t%e4COUPlin?_ Cigcuf'::0~4a coefficients Ofltt)?e Cgudpgng are gre valid then to the attractors there correspond the slow

ior(11it;1| éovn(iri%ic:nse (,ar;osrlr:z IgsecilIgticr)ltggpiﬁgpg?gtvl\'/??a:ser d?c?desla?erzer?ttearl)pSCi”ating regimes with the time interval > 1 between

in anti-phase, (b) slow oscillating spikes are nearly in phase, (c) slow argpikes of different lasers and with the time interval between

fast oscillating spikes. spikes of a given laser more th@t. Note, the conditions
(8) bound the region of the initial conditions leading to SO
anti-phase solutions.

second laser (frequecy locking solution). Below we present

the maps responsible for solutions of different types. B. Fixed point of the map for SO anti-phase solution
In the region discussed the twice iterated map (5)-(7) has
A. Map for SO anti-phase solution the stable fixed point§ = & = &£*. To this attractor there

corresponds the limit cycle - the periodic solution of spiking
type. The period of oscillations for each lasgr= T, + T

is more than2t. The lasers are (nearly) in anti-phase, i.e.
spikes of the different lasers are half-period shifted.

In the case of symmetrical couplingy = a2 = a, the
upper boundary,p(a) of the region where the symmetrical
slow oscillating solution exists can be found analytically the
transcendental equations (8). It is presented in Fig.2 as the
curve fora= 1. As the coefficient of asymmety= az/a
decreases the region of slow oscillation regimes decreases
too.

To derive the map let us fix the momeht= 0 at the
moment of the starting laser numberied 1 and determine
the set of initial conditions as follows:

y1(0) =c1, €1 > 1, y2(0) =2, C2 >0, 2

and we choose initial functions(s) = hi(s) for se [—1,0)
from relatively wide class of functions with properties:

/0 hi(s)ds< v 12, 3)



to ! ! ' l map
1/ f1(T1)
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where
0 o0z 04 06 08 fi(T) = qg+(ci—pi—0q)e " +aoppe HTHE,
| . . . i) = — 9 _ e T —Ti+T
coupling coefficient alpha 1 f2(Ti) = g+(co—p2e”—0q)e "4 03 pleT_ :
f3(T) = @-DTi+(c-pi-a)(l-eT)
— i 2]
Fig. 2. Regions of the parametexg, T where slow oscillating regimes are +oap2(l—e Ti+1+ ),
realized in the cases of values of the asymmetry coeffi@entay/a; = f4(Ti) _ (q _ 1)Ti n (C2 B q)(1_ e—Ti)

1;0.75;05;0.25. The normalized pumping ratg= 1.5. . :
—p1(1-e 9 farp(1—e ),

. ] ] ) and p; is positive root of Eq.(6),0 is positive root the

For the fixed point we get simple relation between thequationm- (q—1)6 + (c,— q)(1— exp(—8)) = 0, Ty is the
energy spike and the inter-spike intervals for each laser: positive root of the equatioriz(Ty) = 0, T is the positive
root of the equationfs(T2) = 0 and pz is the positive root

% = (qf1)w (9) of the equation1—e P2)[m+c;+(q—1)6] — p2 =0.
T +T; 1-ma SO solution exists if the conditions
independent orr although bothp; and T;* depend on the T>1,0<1, m<0,¢c1>1 c>1 (13)

time delay. From the physical point of view it means the . ) )
energy average over the full period of oscillations increasé¥® valid for each iteration of the map (14) and any attractor

as the product of the coupling coefficients increase. The raffff the map (12) exists. These conditions bound the region of
of energies is given by initial conditions for regimes wittd < 1. In the caséf < 1

the solutions can be characterized as nearly in-phase state.
E{ . 1+ as
Py, 1+a1’

(20) IV. SWITCHING BETWEEN SPIKING

It has been already mentioned that in addition to slow
that indicate differentiation of energies due to the asymmeoscillating solutions there exist fast oscillating solutions in
rical coupling. the system (1). One can derive the corresponding maps

For the time delay comparable with inversion dampingollowing the method described in [6]. The dimension of
time, T <~ 1, we get additionallyp;T; ~ p;T,- and estimate the map increases as the number of spikes increases in the

the phase shift of spikes as delay interval. The maps obtained allows us to investigate
analytically stability of the fixed points and, in this way,
L 1 stability of spiking oscillations. Also the conditions of the

(1) type (8) and (13) bound the regions of the parameters and

initial conditions for desirable regimes.

Hence, the phase shift of spikes varies fra8 to 1/2 as In view of possible applications it would be useful to
the coefficients of coupling varies from; = 0,01 =1 (in  describe the method of controlled switching over variously
the strong asymmetrical case)de = a; (in the symmetrical synchronized states in the coupled lasers. It means in the
case). framework of the dynamical theory that an external force
applied has to change the state of the system in the phase
space, in instance, from the attractor of the map (5) into the
basin of the attractor of the map (12). One can formulate the

In order to get the map for nearly in-phase SO spikingroblem of optimal external force providing minimal energy
represented in Fig. 1(b) we start again with initial condition®r/and minimal time of switching. In general case, however,
(2)-(4), i.e. determine the vector paramefer= (cy,cy,c3).  the problem is nontrivial as the delayed system (1) is of the
Integrating asymptotically under — « system (1) we get infinite dimension similar to spatially extended systems.
that in time intervalT = min{Ty, T2} the original situation In special case switching can be achieved by additional
(2)-(4) appears again with replacing the vector paramet@npulse pumpingR, applied for each lasers at the time
& — & , where is determined by the three dimensionalmomentsx;. Fig.3 shows impulse induced switching from

T +T 2+ai—ap

C. Map for SO in-phase solution



SO anti-phase spikes to SO in-phase spikes and to frequency 807
locking spikes through long (Fig.3a and 3b) and short
(Fig.3c) transient processes. In order to realize such a fast
switching we calculate the valué$ andx in the following
way.

Let the pumping rate in Egs.(1) to be

q=0o+0i

where g = 0 everywhere bug; # 0 for t € (x,x+ J). The
width d < 1 but B = gid ~ 1. Denote the fixed point 75 2
of the map (5) as(cj,,C5,,m;) (anti-phase solution) and
the fixed point of the map (12) a&j;,c;,m;) (in-phase
solution). Then we integrate asymptotically the system (1)
with boundary conditiongc;,, c5,,m;) at the moment =0
and (cj;,c5,my) at the moment =T > 1. Doing so we get
the system of transcendental equations

Ci = Clat+Ped T,

C = c§a+P1e?‘2‘T, 5

Moo= m+P(1-ev), (14)

m, = (@-)T+(cG—-a)(l-e )+
+api(l—e 1) +P(1—e2 )

from which T can be found asT (Pi,P,,x1,%2) and can

be minimized for optimal values of argument$min =
T(P, P2, X1,%2) > T.

(@)
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Intensities ul and u2
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Intensities ul and u2

80T
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V. CONCLUSION

In this paper spiking regimes in coupled laser diodes have
been classified as slow and fast oscillating ones in the scale *
of the time delay. We have reduced the original system with
delayed argument to the finite-dimensional maps responsi- |

3

407

Intensities ul and u2

il by
AR
ble.for. each type of' the solutlons, namely, for thg s!ow Py > 9 16 i3 80
OSC|IIat|_ng nearly ant_l-phase solution, for slqw (_)SClIIatmg Time in units of time delay
nearly in-phase solution and for the fast oscillating phase-
shift solution. The order of the map increases as a numbeig. 3.  Switching from slow oscillating anti-phase spikes to (a) slow
of spikes on the delay interval increases. oscillating in-phase spikes and to (b) frequency locking oscillating spikes
. . . epresented in Fig.1. Switching is induced by additional impulse pumping
_The dISCI_’Ete maps obtained aIIO\_N_L_IS to de_t_ermme ang™ 1 laser at the momertt= 34t. (c) Switching through short transient
lytically regions of parameters and initial conditions to gebrocess is induced by optimal impulses in both lasers at the mdme3dr.

spiking in coupled laser diodes with desired stable phag&e pumping rate = 1.5, the time delay in the coupling circuit= 0.4,
shift coefficients of the coupling are; = a, = 0.3, normalized photon damping

. . . ) ratev=10°.
We also find analytically conservation laws in the form

of relations between energies and inter-spike intervals in

systems with symmetrical and asymmetrical coupling. At[4] M.-Y. Kim, R. Roy, J.L. Aron, T.W. Carr and I.B. SchwartBhys.

the same time redistribution of the energy between spikes Rev. Lett vol. 94, pp. 088101, 2005.

of different lasers depends on the time delay as well as of' 'iﬂiz%"blegé;' Fabiny and K. WiesenfeldOSA B vol. 10, pp. 1121-

the asymmetrical coefficient. [6] E.V. érigorieva, S.A. Kashchenk®ifur. & Chaos vol. 3, pp. 1515-
Delay-induced multistability has been demonstrated in the 1528, 1993.

infinite dimensional phase space as coexistence of various

spiking. The method developed is promising for further dis-

cussion of controlled switching between different coexisting

periodic states by a small injection signal.
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