
PHYSCON 2009, Catania, Italy, September, 1–September, 4 2009

STOCHASTIC RESONANCE IN COUPLED BISTABLE
SYSTEMS

Anatole Kenfack
Physikalische und Theoretische Chemie

Freie University in Berlin
Takustr.3, 14195, Berlin, Germany

kenfack@chemie.fu-berlin.de

Kamal Priya Singh
Department of Physics

Indian Institute of Science Education and Research
Mohali, Chandigarh 160019, India

singhkp@pks.mpg.de

Abstract
We consider a system of two coupled bistable systems

driven by both periodic and noise sources, focusing
mainly on stochastic resonance (SR). In the absence of
coupling, we found two critical damping parameters:
one for the onset of resonances, and another for which
theses resonances are optimum. We demonstrate that
the absence of resonances in the weak coupling regime,
is solely due to the presence of chaos in the system.
Turning on the coupling, we found that the strong cou-
pling regime induces a coherence that manifests itself
by the matching of the signal to noise ratios of both
subsystems. Finally, we demonstrate that our system
does not synchronize for any coupling parameter.
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1 Introduction
Among a large variety of phenomena which has

been attracting researchers in coupled nonlinear sys-
tems over several decades, synchronization [Pikovsky,
Rosenblum and Kurths, 2001], chaos and bifurcations
structures [Kozlowski, Parlitz and Lauterborn, 1995]
have been the most prominent. The phenomenon of
stochastic resonance however has been thouroughly
and mostly explored in single oscillator system [Gam-
maitoni, Hänggi, Jung and Marschensoni, 1998], in-
cluding chemical reactions, bistable ring lasers, semi-
conductors devices, and mechanoreceptor cells in the
tail of the grayfish. This now well-established effect
requires three fundamental ingredients: (i) a weak co-
herent signal, (ii) a noise source which is inherent to
the system or which is added externally to the signal,
and (iii) an energetic activation barrier. In the absence
of noise, the signal should be weak enough such that
the effect of signal-induced switching must not be ob-
served. Likewise, the noise-induced switching should
not be appreciable in the absence of the signal. It is the

interplay of both the signal and the noise that results in
a sharp enhancement of the power spectrum within a
narrow range about the forcing frequency. This obser-
vation was explained by relating the forcing frequency
with the switch rate (Kramer’s rate) of the unperturbed
system [Benzi, Parisi, Sutera, and Vulpiani, 1989]. To
distinguish this to the dynamical resonance, one speaks
of stochastic resonance (SR). Due to its simplicity and
robustness, SR has been implemented by mother na-
ture on almost every scale, thus attracting interdisci-
plinary interest from physicists, geologists, engineers,
biologists and medical doctors, who nowadays use it
as an instrument for their specific purposes[Wellens,
Shatokhin and Buchleitner, 2004]. The first experi-
mental observation of SR was performed while inves-
tigating the noise dependence of the spectral line of an
ac-driven Schmitt-Trigger [Fauve and Heslot, 1983].
Since then SR has grown into a rapidly developing, in-
terdisciplinary field of research, with numerous experi-
mental observations in biological, laser, electronic and
even quantum systems.
Although SR has been largely explored in various

dynamical systems [Gammaitoni, Hänggi, Jung and
Marschensoni, 1998; Wellens, Shatokhin and Buchleit-
ner, 2004], little has been done for coupled stochas-
tic systems [Bulsara and Schmera, 1993; Neiman and
Schimansky-Geier, 1995; Gandhimathi, Rajasekar and
Kurths, 2006; Anishchenko, Astakhov, Neiman, Vadi-
vasova and Schimansky-Geier, 2007]. The case of cou-
pled underdampled stochastic bistable systems, which
is ours, has hitherto not yet been considered.
In this paper, we demonstrate the constructive role of

noise assisted by a weak signal in a system in which
chaos plays a role. Such a system has been consid-
ered by [Neiman and Schimansky-Geier, 1995] where
SR has been studied. Here we revisit the same sys-
tem but weakly damped, i.e., the inertia plays a major
role, thereby rendering the system richer in that chaos
is likely to show up for some parameters values. The
coupling parameter, the noise strength and the signal’s
frequency and amplitude are the key parameters. The



paper is organized as follows: section 2 is devoted to
the description of the model, while section 3 and 4
present our results and discussions, and section 5 con-
cludes the paper.

2 The model system
The system that we are interested in, consists of

two mutually coupled bistable underdamped oscillators
which are forced by a periodic signal and statistically
independent noise sources. This system is thus gov-
erned by the following dimensionless stochastic differ-
ential equations,

ẍ = −γẋ +
dV (x)

dx
+ k(y − x) +

√
2Dξx(t) + F (t)(1)

ÿ = −γẏ +
dV (y)

dy
− k(y − x) +

√
2Dξy(t) + F (t)(2)

wherek is the coupling strength,γ the damping param-
eter,D the noise intensity of two independent Gaussian
white noiseξx(t) andξy(t)

〈ξx(t)ξy(t′)〉 = 2 D δxy(t − t′), (3)

which are uncorrelated with zero-mean. The driving
signal,F (t) = A0 cos(Ω t+Φ), is characterized by the
amplitudeA0, the frequencyΩ and the phaseΦ. The
potentials of the two subsystemsV (x) = a1 x2/2 −
b1 x4/4 andV (y) = a2 y2/2 − b2 y4/4 are sketched
in Fig. 1, with parameters set toa1 = b1 = 1 and
a2 = 1, b2 = 1.5. This choice, that determines the
Kramer’s rates, leads to two different activation bar-
rier energies∆Vx = 0.17 and ∆Vy = 0.25. For
the purposes of stochastic resonance, we fix the driv-
ing amplitudeA0 smaller than the above activation
barrier energies, so to avoid switchings that are due
solely to the driving force. The relaxation frequencies
of the two subsystems are thus identical and equal to
ωx = ωy =

√
2a1. To allow for adiabatic driving,

we set the modulation frequency smaller than the re-
laxation one, sayΩ = ωx/20. Considering the sub-
systemy, for zero noiseD = 0 and for a moderate
dampingγ = 0.25, Figure 2 gives a vivid picture of
no-switching withA0 = 0.1 < ∆Vy (a), and switching
with A0 = 0.15 > ∆Vy (b).

We note in passing that considerable efforts have been
put to understand the mechanism of stochastic reso-
nance in a single oscillator, Eq. 1 or Eq. 2 withk = 0.
It has been demonstrated that such a system may ex-
hibit a new type of SR [Stocks, Stein and McClintock,
1993; Dykman, 1993; Kang, Xu and Xie, 2003], due
to the approximate coincidence between the lowest-
energy eigenfrequency and the driving frequency. This
has been pointed out as a general phenomenon in all un-
derdamped nonlinear oscillators. Conditions for the co-
existence of both resonances have also been obtained.
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Figure 1. Potentials of the two subsystems V(x) (dashed) andV(y)

(solid), with ∆Vx = 0.17 and∆Vy = 0.25 their activation

barrier energies, respectively.
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Figure 2. Protypical pictures of no-switching withA0 = 0.10
(a) and switching withA0 = 0.50 (b) of the subsystemy with

∆Vy = 0.25 and fork = 0.0, D = 0.0, γ = 0.25.

It is also worth recalling that when the dissipation
is effectively strong as compared to the inertia, sys-
tem Eqs. 1, 2 reduce to the first order stochastic dif-
ferential equations. Our system will be treated numer-
ically using standard techniques. In what follows, we
setΦ to zero, and explore the phenomena of stochastic
resonance on uncoupled subsystems, for weak as well
as strong limits of dissipation.

3 Stochastic resonance for uncoupled subsystems
Here only the noise and the driving force are present,

thereby allowing for the study of the stochastic reso-
nance. For this purpose, We consider two situations
where (a)A0 = 0.10 and, (b)A0 = 0.15 that do not
alllow switching in the absence of noise. Note also
that in the absence of the driving, the stochastic switch-
ing time scale which is characterized by the Kramer’s
rates,ΓKx,y

∝ exp(−∆Vx,y/D), is too long due to the
weakness of the white Gaussian noise employed here,
i.e. the noise only can not also induce switching. The
time scale of switching being1/ΓKx,y

, the time series
for D ∈ (0, 0.5) (not shown) do not exhibit any switch-



ing. When both the noise and the driving force are ap-
plied, the signal to noise ratio (SNR) is indeed the good
candidate commonly used for detecting the construc-
tive role of noise. Figure 3 shows SNR of both uncou-
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Figure 3. SNRx,y of the two uncoupled subsystems forγ = 0.1
(a) andγ = 0.75 (b). In each panel, black-solid (SNRx) and

black-dashed (SNRy) for A0 = 0.1, and brown-solid (SNRx) and

brown-dashed (SNRy) for A0 = 0.15. Unlike (a), resonances are

clearly seen in (b).

pled subsystems in the weak damping regimeγ = 0.1
(a) and in the strong oneγ = 0.75 (b). In each panel,
the lower curves in black are for A0 = 0.1 while the
upper ones in brown are for A0 = 0.15, where SNRx
is in solid and SNRy in dashed. It turns out that the
cooperative effect of noise and driving force does not
show up for the weaker dissipation regime (a) where
chaos may be present. A systematic study for the dis-
sipation, ranging from very small to very large values
of γ has revealed two critical values, namelyγres for
which resonances appear, andγopt for which optimum
resonances are reached. Fig. 4 depicts SNRx for vari-
ous values ofγ as displayed on the panel. We found in
this case thatγres = 0.08, while γopt = 0.5. Finally
the Lyapunov exponent, a good indicator of chaos in
dynamical systems, has been plotted as function ofγ in
Figure 5. This clearly confirms that chaos is present in
the weak damping regime and is thus responsible of the
destruction of the resonances in the system. The mech-
anism preventing the appearance of resonances in that
regime is a topic of its own and will be published else-
where. At this point, the question that naturally arises
is what would be the impact of the coupling on the phe-
nomena observed here.

4 Influence of the coupling parameter
Here the coupling is switched on and we want to see

how the SNR studied in the above section can be af-
fected. In this case where both subsystems are cou-
pled, the synchronization phenomena is another impor-
tant issue and will also be addressed.
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Figure 4. SNRx as function ofγ for A0 = 0.15 andk = 0.0,

showing the critical values for resonancesγres = 0.08 and for the

optimum of the resonances that can be reachedγopt = 0.5.
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Figure 5. Lyapunov exponent of the subsystemx, for k = 0,

D = 0, andA0 = 0.15, indicating the presence of chaos in the

weak dissipation regime.

4.1 Stochastic resonance
The stochastic resonance (SR), as already introduced

in the preceding section, is essentially based on the ex-
ploration of the power spectra of subsystemsx̄(ω) and
ȳ(ω). Because of the coupling, another quantity of in-
terest is the coherence function defined as

Γ2 =
|Sxy(ω)|

Sxx(ω)Syy(ω)
(4)

whereSxy(ω) is the cross spectrum of processesx(t),
y(t) andSxx(ω), Syy(ω) are the power spectra ofx(t),
y(t), respectively. Likewise the power spectrum of the
collective processesu(t) = x(t) + y(t) which reads

Suu(ω) = Sxx(ω) + 2 Sxy(ω) + Syy(ω) (5)

is also of interest. HereSxy(ω) is the real part of the
cross-spectrum betweenx(t) andy(t). The coherence
function measures the coherence of the signals. This
quantity reaches unity in case both processes become
coherent.
Figs. 6 and 7 show the signal to noise ratio of the

system as function of the coupling constant for param-
eters that in the absence of the coupling showed both



no-resonances (Fig. 3(a)) and resonances (Fig. 3(b)).
It turns out that the coupling has no influence on the
resonances phenomena – these are well preserved for
the whole range of the coupling constant. Remarkably,
as the coupling increases, the SNR of both subsystems
comes closer and closer and becomes identical at the
stronger limit. Similarly the coherenceΓ2 (not shown)
exhibits the same trend. As the coupling constant in-
creases, this quantity goes to unity, indicating an opti-
mum coherence of the system. What would this strong
limit of coupling mean for the synchronization of the
two subsystems?
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Figure 6. SNRx,y as function of the coupling constant at the weak

dissipation limitγ = 0.05, for A0 = 0.15. (a) k=0.05, (b)

k=0.25, (c) k=0.5, (d) k=1.0.
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dissipation limitγ = 0.05, for A0 = 0.15. (a) k=0.05, (b)

k=0.25, (c) k=0.5, (d) k=1.0.

4.2 Synchronization
Here we wish to find out in which parameter ranges

the system may synchronize. To proceed we consider
the following quantity

L(t) =
√

(x(t) − y(t))2 + (ẋ(t) − ẏ(t))2 (6)

which is also proven as a good measure of the synchro-
nization [Pikovsky, Rosenblum and Kurths, 2001]. We
have thus played with the coupling parameter and no
synchronization state has been achieved, even at the
very strong coupling that show strong coherence on the
SNRx,y, see Figs. 6 and 7 fork = 1. Fig. 8 shows
an example of the time series of the measure of the
synchronizationL(t), for A0 = 0.15, γ = 1.0, and
k = 1.0. Similar outputs are found throughout the
whole range of the coupling parameter, demonstrating
that synchronization in our system is not reached as
L(t) does not converge to zero. What makes this syn-
chronization difficult to achieve is presumably not only
because the two subsystems are topologically not iden-
tical, see Fig. 1, but also because the system is nonde-
terministic due to the presence of noise. The opposite
happens in deterministic coupled nonlinear systems
where it is commonly known that the strong coupling
enforces the synchronization of both subsystems [Vin-
cent, Kenfack, Njah and Okinlade, 2005; Vincent and
kenfack, 2008].

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

time  t

L(t)

Figure 8. Measure of synchronizationL(t) as function of time in

the strong coupling regimek = 1, for A0 = 0.15, andγ =
0.75. This is a signature of nonsynchronization that prevails inthe

entire system.

5 conclusion
We have investigated the dynamics of two coupled

periodically driven bistable systems submerged into
a certain amount of noise. The phenomenon of
stochastic resonance which has been central was al-
ready considered in a similar coupled bistable systems
but at the limit of very strong damping [Neiman and
Schimansky-Geier, 1995], i.e. the overdamped one in
which chaos is not present. On one hand, we dealt with
the dynamics of the uncoupled systems in which we
showed that there are two important damping parame-
ters; one that indicates the threshold for the appearance
of resonances and another one for which these reso-
nances are optimum. We further showed that the weak
damping regime prohibits resonances, that is the role of
noise is not constructive. With the help of the Lyapunov



exponent, we found that this non appearance of reso-
nances is due to the presence of chaos in the system.
On the other hand when the coupling is turned on, we
found that these resonances are in general not affected.
The overall behavior is preserved. However, the strong
coupling regime induces both signal to noise ratios to
match, thereby showing a very high coherence. Along
the same lines, exploring the whole range of the cou-
pling parameter, the synchronization of the two sub-
systems has not been reached contrary to the coupled
nonlinear deterministic systems in the strong coupling
regime. The influence of the phaseΦ of the driving on
the rich phenomena observed, which is a future topic,
will certainly contribute additional insights into the un-
derstanding of our system.
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