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1. INTRODUCTION

Many adaptive control methods are based on some
kind of closed-loop identification scheme. A generic
two-degree of freedom (G2DOF ) scheme was
introduced in Keviczky (1995), when the process is
open-loop stable and it is allowed to cancel the stable
process poles, which case occurs at many practical
tasks. This framework and topology are based on the
Youla-parametrization  (Maciejowski, 1989).
providing all realizable stabilizing regulators (ARS)
for open-loop stable plants and capable to handle the
plant time-delay, too.
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Fig. 1. The generic 2DOF (G2DOF) control system

A G2DOF control system is shown in Fig. 1, where
yr  is the reference and yn  is the output noise (or
disturbance) signal. The optimal ARS regulator of the
G2DOF scheme can be given by an explicit form
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where

Q Q R K R G Po n n n n n= = = +
−1  with K G Pn n= +

−1 (2)

is the associated optimal Y-parameter furthermore

Q R K R G Pr r r r r= = +
−1  ; K G Pr r= +

−1 (3)

assuming that the process is factorable as

P P P P P z d= =+ − + −
− (4)

where P+  means the IS and P− does the IU factors,

respectively. z d−  corresponds to the discrete time-
delay, where d  is the integer multiple of the
sampling time. It is interesting to see how the
transfer characteristics of the closed-loop look like:
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where y t  is the tracking (servo) and yd  is the
regulating (or disturbance rejection) independent
behaviors of the closed-loop response, respectively.

For the above G 2 D O F  scheme closed-loop
identification (ID) is needed. The scheme in Fig. 1
suggests a special way for combined ID and control.
Introduce the internal auxiliary signal û   from Fig. 1

û P K y P G P y= = +
−

r r r r r r
1 (6)

Observe that it is possible to use û k( )  as an input

signal and y k( )  as output signal generated by the
apriori known part of the controller in a closed-loop
to the identification procedure.

Besides the above two signal pairs ˆ ,u ∆εF[ ]  and

ˆ ,u y[ ]  it is possible to find further pairs: u y,[ ] ,

ˆ ,u x[ ]  or ˆ ,u e[ ] , which can also be used for closed-
loop ID  of the model M  (see Fig. 2, which is
another form of Fig. 1). These possible cases differ
by the resulting modeling errors, strongly



influencing the model accuracy in certain frequency
domains.
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Fig. 2. Special scheme formulating combined ID and
control strategy

2. COMPARISON OF CLOSED-LOOP ID
ERRORS

Introduce the additive

∆ = −P P̂   ;  ∆+ + += −P P̂   ;  ∆− − −= −P P̂ (7)

and relative model errors
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In the sequel it is shown how the modeling errors of
different ID methods depend on the relative model
error l.

Open-loop ID
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where ′u  used in open-loop is assumed equal to yr .

Parallel-in-loop ID
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where the ID is performed in the closed-loop between
u  and y . It is interesting to note that in this case u
depends also on the output noise yn , which makes
the input correlated (caused by the so-called
"circulating noise"), therefore special further
conditions are to be fulfilled.

ID based on KB parametrization

There is a natural possibility to perform ID avoiding
the above "circulating noise" issue, namely to
perform the ID between û  (see Fig. 1) and y . In this
approach (called KB-parametrization (Keviczky,
Bányász, 1994; 1995)) û  depends on the apriori

model estimate P̂i , so only iterative scheme can be
constructed.
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where εKB = −y P uˆ ˆ  and

ˆ ˆu R K y R G P y= = +
−

r r r r r r
1 (12)

(If an independent output noise is present with a
usual linear noise model, then it is possible to prove
that the output noise in the G2DOF  closed-loop
scheme asymptotically becomes also independent
similarly to the open-loop case (Keviczky and
Bányász, 1998).)

j Type ε W j

1 εol y P u− ′ˆ P

2 εpil y P u− ˆ Pr

3 εKB y P u− ˆ ˆ P Pr n1−( )
The three cases are summarized in the above Table,
where the different weighting factors W j  are shown
for the different cases.

Note that the accuracy of the estimated model at a
given frequency is inverse proportional to the weight
in the modeling error at that frequency. Observe that
W1, W2 are low-pass filters. So "good" model
estimation can not be expected around the vital cross-
over frequency ωc using these cases. W3 gives the
best weighting, because its maximum is the
geometrical mean of the tracking and regulating
bandwidths.

3. EQUIVALENT NOISE-MODEL STRUCTURES

Based on Fig. 1. and 2 one can easily draw the final
ID scheme for the KB-parametrization as Fig. 3
shows. Here the noise-model Ho  is introduced
generating the output noise yn  from the independent
source noise w  and input r .
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Assuming that Co is according to (1), i.e. an ARS
Youla parametrized regulator, it is easy to check that
the KB-parametrization opens the closed-loop for
reference model excitation in the exact model
matching case, when P̂ P= . However, the original
output noise model Ho  is changed ("augmented").
Based on this observation an equivalent "open-loop"
scheme can be derived shown in Fig. 4.

The KB-scheme with the Y-parameter gives the
sensitivity function
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so the augmented modified noise model of the
scheme (see Fig. 5) is
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Fig. 5. Equivalent noise-model schemes

The KB-parametrization, when P  is not known (Fig.
6) and based on the model P̂  of the process, gives
the equivalent closed-loop transfer function form as
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The equivalent virtually opened closed-loop is now

shown in Fig. 7, where ′ =( ) =P P P Pˆ  and

′ =( ) =H P Pˆ  = −( ) = ′H Q P Ho o o1 . This figure

presents the possible identification scheme via ε .
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Fig. 7. Equivalent model-based noise-model scheme
for the KB-parametrized closed-loop

Let us investigate ′P  and ′H  in the K  B
parametrization. These transfer functions ′P  and ′H
are the projected version of the original P  and Ho

for ∆,l ≠ 0 . Thus
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where the complementary sensitivity function
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was used. Similarly the sensitivity function
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Observe the limiting properties at  ∆,l → 0 , i.e.
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The projection of the original noise-model Ho  is



more complicated:
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and represented by Fig. 8.
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Fig. 8. Simplified equivalent model-based noise-
model scheme for the KB-parametrized closed-
loop

It is interesting to see that the input of the process at
the KB parametrization is
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This means that in case of convergence the reference
signal r  will act directly on the process.

4. PREDICTION ERROR IDENTIFICATION

The equivalent closed-loop system equation using
the KB parametrization is

y P r H w= ′ + ′ (29)

and it is easy to show that the prediction error
equation is
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Investigate the possible convergence points, where P̂

and ˆ ′H  will converge to
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Using (32) finally the prediction error is
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The possible convergence point ∆ → 0  and
ˆ ′ → ′ =( ) = ′H H H∆ 0 o  when P  is in the model set

and ˆ ′H  is in the augmented ′Ho  noise model set.
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4. GENERIC SCHEME AND KB-
PARAMETRIZATION

Try to investigate the relationship between the
G2DOF system and the KB-parametrization. The
equivalent forms (Fig. 9 and 10) show the parallel
relation to the KB-parametrized closed-loop. Because
P̂  is equivalent to a KB-parametrized auxiliary
closed-loop, the above scheme can be again rewritten
into a parallel special closed loop form given on Fig.
11, which is self-explanatory.



The related uncertainty model is shown on Fig. 12,
where
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Similarly to the previous sections one can write
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Note that in the G2DOF scheme û  corresponds to r .

5. VARIANCE ESTIMATION

Here we follow the procedure and basic approach of
Ljung (1987). The prediction error for ∆ → 0  is
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Finally the following covariances are obtained
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The partial covariances are
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Shortly summarizing
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which means that we obtained the classical results
available for open-loop ID for the process parameters.
The variance estimate of the noise parameters are

weighted by So
2
. This weight is generally smaller

than one except the special medium frequency range,
as Fig. 13 shows.
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Fig. 13. Uncertainty scheme of the G2DOF system

The above result is quite understandable because
instead of Ho  the augmented noise-model
H S Ho o o≈ ′  is identified, because

H
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So finally the elimination of the influence of So  is
obtained. It is interesting to compare the variance
estimate classical results for open-loop and closed-
loop ID:
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This means that the closed-loop ID variances are
always greater than the open-loop ones and K B
scheme based ID. It is easy to check that
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where

T
CP

CP
=

+1
(57)

is the complementary sensitivity function, thus the
second term is a special noise/signal ratio.

6. CONCLUSIONS

The paper analyses the asymptotic limit variances of
a closed-loop identification scheme based on a
method introduced by the authors and named KB-
parametrization. This parametrization is a possible
competitor of the Youla-Kucera parametrization,
because it is much simpler. Adaptive and/or iterative
control algorithms can be easily constructed using
this approach. Generally parameter variances obtained
from closed-loop identification are greater than the
open-loop ones. Using the KB-parametrization the
proper closed-loop ID can asymptotically reach the
open-loop variances.
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