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A planar theory for oblique impact of an inflated thin-walled spherical shell (sports ball) 
against a rough rigid surface is presented and compared with rigid-body theory.  This large 
deflection theory is based on assuming that during impact, the initially spherical ball flattens 
against the constraint surface while the remainder of the ball (moving with uniform 
translational velocity) remains undeformed.  With the assumed deformation field, this theory 
for impact of a thin-walled shell includes a velocity discontinuity between the contact area 
that has been flattened and the moving part of the shell.  During compression and restitution 
phases of contact, flow of momentum across the periphery of the flattened contact area results 
in a non-conservative momentum flux reaction.  For a ball that is both translating and 
rotating, the distribution of the normal component of velocity for material entering and 
exiting the flattened contact area results in a distribution of momentum flux force intensity 
around the periphery of the contact region and consequently, a momentum flux torque acting 
on the flattened sphere.  This paper relates changes in rebound velocity and rate-of-spin of 
thin-walled inflated spherical shells that result from impact to structural properties as well as 
the maximum deflection. 
 
1.   Introduction 
For a thin-walled spherical shell 
(sports ball) colliding against a hard 
surface, a principal effect of the large 
deflections that develop during impact 
is a significantly large area of contact 
between the colliding bodies.   As seg-
ments of the ball come into contact 
with the hard surface they are required 
to have a normal component of 
velocity that is compatible with that of 
the surface; i.e. in the contact area, the 
normal component of velocity must 
vanish.  The distribution of velocity in 
the shell varies during the finite period 
of contact as the contact patch first 
increases and later decreases in size.  
For non-spinning thin-walled spherical 
shells with negligible flexural stiffness, 
Johnson et.al. [1] analysed changes in 
motion resulting from normal impact 
against a plane surface.  They 
recognized that during impact, the part 
of the ball which is accelerating has 
variable mass and they used the term 
momentum flux force for that part of 
rate-of-change of momentum assoc-
iated with transfer of mass from the 

accelerating into the stationary part of 
the compressing sphere.  Subsequently, 
Percival [2] corrected a perceived error 
in the previous analysis and explained 
why momentum flux force is 
irreversible.  

 
 

Fig. 1: High speed photographs showing 
maximum displacement, zmax = 0.2, 
resulting from a normal impact at 6ms-1 of 
a size 5 basketball inflated to initial gauge 
pressure of 51kPa (8 psig). 
 

Hubbard and Stronge [3] used a 
similar method to analyse sources of 
dissipation during impact of table 
tennis balls. The effect of rotation was 
added by Haake et.al. [4] who related 
momentum flux couple to the 
difference between the largest and 
smallest normal velocity across the 
contact patch.  The present paper 



differs from these previous 
investigations by considering the 
distributed reaction force acting at the 
periphery of the contact area where the 
change in momentum is occurring. 

2.  Properties of Deformed Thin-
Walled Spherical Shell 

Thin walled spherical shells which 
have large membrane stiffness but 
small flexural stiffness can be analysed 
by assuming that during impact, 
deformation occurs only in the contact 
region; i.e. an initially spherical cap is 
flattened against the contact surface. 
Outside the contact region, the 
remainder of the sphere is assumed to 
remain undeformed.  With this 
kinematic assumption, the geometry of 
the deformed sphere can be expressed 
as a function of the indentation δ, 
which is equal to the height of the    

 
pa

O
G

a a

δ

R

r
C

Md

M c

pg

G

pa

O

δ

r
C

V

V

3

1

F3

C
1

ω

F

Gpg

( a ) ( b )

 
Fig. 2.  a. Deformed configuration of 
inflated spherical shell and b. components 
of velocity Vi, angular velocity ω,  contact 
force Fi and contact couple C. 

flattened cap in the initial, undeformed 
configuration, see Fig 2.    For thin-
walled shells, the contact radius  a  is 
related to initial radius  R  of the shell 
by 
 

2 2/ 2 / /a R R Rδ δ= −            (1) 
        

The flattened sphere has a center 
of mass  G  displaced a distance 2 / Rε  
away from the center. Hence, there is 
distance  rG between the flattened cap 
and the center of mass  G(δ)  of the 

flattened spherical shell as shown in 
Fig 2. 
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The initial mass M0  of a thin-
walled spherical shell is M0 24 R hπρ=   
where ρ  is material density and  h  is 
wall thickness.  A thin-walled 
spherical shell has mass distributed 
uniformly across the diameter so the 
mass of the flattened cap Mc  is given 
by  Mc/M0 = δ / 2R.  

Assuming that the flattened 
segment of sphere has only tangential 
velocity, the spherical segment of shell 
and flattened cap have moment of 
inertia  IG about  the center of mass  
G(δ).  The ratio of moment-of-inertia 
of the deformed sphere IG to moment-
of-inertia of the undeformed thin-
walled sphere  I0  = (2/3)M0R2 is  
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A gas pressurized, thin-walled 

shell has an initial volume 0V  =  
(4/3)πR3 which is decreased by volume 

cV  of the spherical cap,  cV / 0V  = (δ2 / 
4R2)(3 – δ /R).  Thus at any deflection 
δ, the internal volume of a thin-walled 
sphere decreases to V (δ) = 0V – cV .  
The pressure – volume relation for a 
perfect gas then gives the ratio of 
internal pressure pg(δ) to atmospheric 
pressure  pa  outside the shell as 
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where specific heat ratio for air, γ = 1.4 
and initial internal pressure,   p0 = 
pg(0). 

3.   Normal Force at Contact Surface 

 3.1  Gas Force Acting on Contact Area 

As inertia presses a colliding thin-
walled spherical ball against a flat 
surface, a contact force develops — 
this both deforms the shell and 
compresses the gas within the shell.  If 
the shell is thin-walled and it has a 
relatively small elastic modulus — e.g. 
a rubber ball — the flexural stiffness of 
the shell is negligible so the normal 
force arises almost solely from internal 
pressure in the ball pressing the contact 
area of the shell against the contact 
surface.  This gas force  Fg = πa2(pg(δ)  
– pa) depends on the difference 
between the current internal gas 
pressure  pg(δ) and atmospheric 
pressure  pa.  This force increases with 
increasing contact area, Fg = πa2(pg(δ)  
– pa).  Internal pressure changes with 
deflection δ /R  in accord with 
expressions (3) and (4); hence,  
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3.2  Momentum Flux Force and Couple 

As material flows across the interface 
into the deformed cap during approach 
or compression, at the contact surface a 
momentum flux force decelerates the 
inflowing  

   

 
Fig. 3.  Normal force during bounce of 
basketball (size 7) with  pg(0) = 152kPa or 
8psig.  Dotted line includes momentum 
flux. Speeds give max. deflection δmax/R = 
0.15, 0.30 & 0.43.     

material from an incoming velocity 
equal to that of the shell, to the 
velocity of the cap (i.e. V3 = 0).   This 
dynamic force results from transfer and 
subsequent deceleration of momentum 
across the interface between the 
moving spherical segment of shell and 
the flattened cap.  Across this interface 
the momentum flux force intensity 
varies around the contact circle, 
depending on the local normal 
component of relative velocity V3 – aω 
cos θ  where V3  is normal velocity, ω  
is angular velocity of the truncated 
spherical shell and  θ  is angular 
position of an element of the contact 
circle measured from the tangential 
direction of motion  n1, (see Fig 2).  
Consequently, this analysis separates 
the period of collision into 3 distinct 
periods: (a) a period of compression 
where the entire periphery of the 
contact circle is being compressed, (b) 
a period of transition where one side of 
the contact circle is being compressed 
and the other is separating, and (c) a 
period of restitution when the spherical 
segment of shell is separating from the 
contact surface.  Integration of force  

 

 

 



intensity gives the momentum flux 
force mfF   and couple mfC  obtained 
by Stronge and Ashcroft [5]. 
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where the angular region of compress-
ion 0- Tθ  is given by, 
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As shown in Fig. 3, the moment flux 
force and couple act during the period 
of compression only. 

  

 
    Fig. 4.  Rigid body (cont. curve) and 
large deflection (dotted curve) calculations 
of angle of rebound as function of angle of 
incidence for basketball (size 7, initial 
press. pg(0) = 152kPa). 

          

 
Fig. 5.  Momentum flux couple gives 
decrease in ratio of final to initial angular 
velocity ω(tf)/ω(0)   of basketball (both 
size 5 & 7) with increasing max. displ. 
δmax/R or impact velocity V3(0) during 
frictionless impact, µ = 0. 

 

    

 
Fig. 6.  Change in angular velocity as a 
function of the initial sliding velocity at 
contact point for initial normal impact s 
peed V3(0) = −18.5m/s ( max 0.5z = ) 

4.  Conclusion 

For maximum deflections as large as 
1/3 the initial radius, the effect of finite 
deflections on the bounce of an 
inflated thin-walled spherical shell is 
surprisingly small – the angle of 
bounce is within 5% of the value 
obtained from rigid-body theory (Fig. 
4) and the angular velocity or spin is 
decreased by 8% due to the momentum 
flux torque (Fig. 6).  At this deflection, 

 

 



 hysteresis of the momentum flux force 
accounts for roughly a 20% decrease in 
kinetic energy of normal relative 
motion. 
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