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1. INTRODUCTION

This work deals with the relevant problem of analysis
and synthesis of robust and adaptive output control of
indeterminate linear time-varying systems. Among
the works devoted to control of time-varying systems
it is essential to distinguish the works of scientists
Ioannou (Tsakalis and Ioannou, 1987; Tsakalis and
Ioannou, 1993; Zhang, et al., 2003), Marino and
Tomei (Marino and Tomei, 2000; Marino and Tomei,
2003), Goodwin (Middleton and Goodwin, 1988),
Bitmead (Zang and Bitmead, 1994; Mareels and
Bitmead, 1986) and others. In spite of the fact that
the problem of control of time-varying systems is not
new and the set of publications is devoted to it, it is
necessary to note, that a number of relevant problems
still has no satisfactory decisions. For today a number
of interesting results for linear systems touching a
problem of control in conditions of slow change of
parameters, periodic change of parameters and also
for a case of special structures of description
matrixes of time-varying plants in which the linear
system consists of time-invariant and time-varying
parts (it is known and coordinated with control input)
(Fradkov, et al., 1999) is received.

Among methods of control of time-varying systems
with unknown parameters the algorithms providing
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set behaviour of system for a class of mathematical
models of certain structure, as a rule, prevail.
Adaptive and robust control algorithms, allowing
solving problems of stabilization and tracking for
time-varying plants in which uncertainty is
coordinated with a control input (Tsykunov,1996).

In 80-90-th years a series of the publications devoted
to development of adaptive controllers for linear
time-varying systems has appeared (Tsakalis and
Ioannou, 1987; Tsakalis and Ioannou, 1993;
Middleton and Goodwin, 1988; Kreisselmeier, 1986).
These results were based on an assumption that
parameters of the plant vary slowly with time and
affect on system as external disturbance. Using this
assumption robust and adaptive control algorithms
for linear time-varying systems providing small
tracking error had been synthesized. Later the
availability of some a priori information about the
changing of parameters has resulted in development
of new adaptive algorithms for systems with fast-
changing parameters (Tsakalis and Ioannou, 1989;
Tsakalis and Ioannou, 1990). However the given
algorithms could not guarantee high quality of
transients (Zang and Bitmead, 1994; Mareels and
Bitmead, 1986), and generally cannot be expanded
on nonlinear systems with variable parameters. The
specified problems had been solved, with use of
iterative procedure of control law synthesis (Zhang,
et al., 2003). However proposed controller has high
order (Zhang, et al., 2003). It is necessary to notice,



that special complexity is represented with control
problems in which the plant is affected by unknown
disturbances (Marino and Tomei, 2000; Marino and
Tomei, 2003).

In this paper a method of output control of linear
time-varying systems with unknown bounded
parameters is considered. An assumption, that the
plant is affected by unknown bounded disturbance,
was proposed. Furthermore proposed control scheme
allows synthesizing adaptive controller of fixed
order, which does not depend of unknown parameters
as in work (Zhang, Fidan, Ioannou, 2003). The
proposed method is based on the results published in
(Bobtsov and Nikolaev, 2005), where the problem of
stabilization of nonlinear system was considered.
Thus the represented algorithms can be applied both
for nonlinear and linear time-varying systems.

2. PROBLEM STATEMENT

We consider linear time-varying system

{z‘: Fz+LUu+w)+0@t)yt-1), )

y =Sz,

where z(t) e R" is vector of state variables; F, L
and S are (nxn), (nx1) and (I1xn) unknown
constant matrices; 6(t) e R" is vector of unknown
time-varying parameters; Y(t) € R is output variable;
w(t) € R is bounded unknown disturbance.

Let us assume that only output variable is measured,
but not its derivatives, the state z(t) and disturbance

w(t) are not measured and parameters of vector

O(t)e R" are smooth and bounded functions. We
also assume that transfer function
H(p)=S(pl -F)'L= bg p; is minimum-phase,

i.e. b(p) is a Hurwitz polynomial.

Together with the plant we consider the command
signal y* which is measured and satisfies the

condition

d'y* =
—|<C <o, 2
o )

where i:@ and number p =n-m (where n and
a(p) and b(p) polynomials
b(p)
a(p)

m dimensions of
accordingly) is a transfer function H(p)=

relative degree.

We define the purpose of control as the solution of
the problem of synthesizing the algorithm which at
any initial conditions ensures the boundedness of all
system signals as well as the execution of purpose
condition

le|<A, (3)
for some t>t,, where e=Yy—y* is a tracking error,

A is a number which can be decreased by control
law selection.

3. CONTROL DESIGN

We rewrite the system (1) in the following form

i=Fz+LU+w)+3 D8 )yt -1),
i=1

“)
y =3z,
- o o
0 1 0
where D, =|0|, D,=|0]|, ..., D, =[0| — (nx])
10 10] L1
vectors; 6,, 6,, ..., 6, are components of the vector
TR
0,
of unknown time-varying parameters 6(t) =| :
O
L 6” .

The state-space model (4) can be represented in the
input-output form

y- ggg; (U+w)+ g((g)) 6,(Dy(t-1)
%Bgawarh +§8@mwvﬂ

d . . _
where p :E is differentiation operator, transfer

funcnonc(p) S(pl -F)'D;.
a(p)

Before beginning the synthesis of control law let us
formulate the auxiliary result published in (Bobtsov
and Nikolaev, 2005). Consider linear system time-
invariant system

x'=A'xX"+B'U,

{ gt (6)
y'=CX,



where X' eR", u'eR, and matrixes A’,

!

y'eR,
and C' have appropriate dimensions. Transfer
function of system (6) is determined by expression

2(p)=C'(pl - A)'B".

Let the system (6) be closed
u'= _ky’ 5 (7)

in which number k > 0.
Let us put a question about existence of positively

defined matrix M =M™ and number K satisfying the
correlations

M(A +kB'C')+ (A +kBC)Y'M <-G, (8)
MB'=(C")’ ©)

for some positively defined matrix G =G" .

Lemma (Bobtsov, 2005; Bobtsov and Nikolaev,

2005). Let xm=- Ep;

b'(p)=b, ,p"" +..+b, and a'(p)=a, p" +..+a,
are numerator and denominator of transfer function
2(p) accordingly. Let b’(p) be a Hurwitz

polynomial and b, >0 then exists a number k, >0

where

for which correlations (8), (9) are solvable for
any k >k, .

Choose the control law of the following form
u=—-g(p)k+A2ye, (10)
where Kk is a positive number; the positive parameter
A is intended for compensation of the uncertainties
Zn: D, (t)y(t—7) and w(t); polynomial ¢(p) is
i=1
chosen for the polynomial £(p)=¢(p)b(p) to be
Hurwitz and (n-1) order; function €(t) is the

estimate of signal e(t)=y(t)-y*({) which is
calculated according to the following algorithm

él :6527
$, =0¢;, (11)
ép—] =o(-ké —..— kp*lfp*l +ke),

e=¢, (12)

where number o >k + A4 ( calculation procedure of
o is presented in Appendix, inequality (A.8)), and
parameters Kj are calculated for the system (11) to
be asymptotically stable for input e=0.

Substituting (10) in equation e(t) = y(t)—y*(t) we
obtain

bﬁp;[ Hp)k+ 28 +w)+ 3 (( ))

ZE p; [H(P)K+ e+ $(p)(K + A +w]
¢ (p)

+3 ()ea)y(t -y, (13)

gOy-y*

where deviation function &(t) equals
g=e—¢€. (14)
Transform the equation (13) in the following way

a(p)e +kg(pb(pe = b(p)g(P)(k + 1)z — Ae]
+ho( p)w+§ci(p)a (De(t - 7) +§lci<p)9i Oy *(t-1)
—a(p)y*,

where according to definition of error signal as
e)=y®-y*@®) an equation
yt—-7)=e(t—-7)+y*(t—7) was used.

Let us introduce the following indication

ap) |y, 3 Ci(P)

f =w(t)-
w(t) b(p) i=1 b(p)

6,y *(t-7),

where according to the polynomial b(p) is Hurwitz,
parameters &, (t) are bounded and smooth, signal y*
and its derivatives up to order p including we

obtain f is bounded.

Then for equation (13) obtain

- PP ek ey —2B)

a(p) +kp(p) a(p) +kB(p)
n ¢ (p)
— 0. (e(t-1).
Fhamkap O

Let us denote

r(p)=a(p)+kB(p),
N
f= ,
¢(I0)

then for (13) we have

e= PP et (k+ a)e+ T
7(p)

+Z (())H(t)e(t 7), (15)



where according to the polynomial #(p) is Hurwitz

and function f(t) is bounded we obtain f(t) is also
bounded.

Rewrite the input-output model (15) in state-space
form

X= Ax+b(—2e+(k+ )z + F)+3.0,6, (Det—7), 16

e=c'x,

where X e R" is unmeasured state vector of system
(16); A, b, g, and c are appropriate matrixes of

transition from input-output model to state-space
model.

As pB(p) is (n—1) order Hurwitz polynomial then in
view of lemma presented above number Kk, exists
that it is possible to find number k =k, and

symmetrical positively defined matrix P satisfying
following matrix equations

ATP+PA=-Q,, Pb=c, (17)
where Q, =Q/ is positively defined matrix.

Notice matrix Q, parameters depend on parameter K
and do not depend on A .

Let us rewrite model (11), (12) in vector-matrix form

- = o(TE +dke),
E=0(¢ 1©) (18)
e=h"¢,
[0 1 0o .. 0 ] (07
0 0 0 0
where I'=| 0 0 0o .. 0 |, d=|0
_—k1 -k, -k, —kpfl_ 1]
o8
0
and h=[0].
_0_
Consider new variable
n=he-¢&, (19)

then according the matrix h structure, error & will
become

g=e—-€=h"he-h"é=h"(he-&)=h"g.

For derivative of 77 we obtain

n=hé—o((he-n)+dke)
=hé+ol n-o(dk +Th)e. (20)

As dk, =-Th (can be checked by substitution) then

1=hé+ol n,

{77 : n @1
e=hn,

where matrix ' according the calculation of
parameters k; of model (11) has proper numbers

with negative real component and satisfies the
Lyapunov equation:

I'N+Nl=-Q,, 22)

where N=NT" and Q,=Q) are positively defined
matrixes.

Theorem. There exist numbers o >k+ A4 and 4 >0
such that all trajectories of system (16), (21) are
bounded and control purpose (3) is executed.

The proof of the theorem is presented in Appendix.

4. ADAPTIVE TUNING OF PARAMETERS

In this part we consider the problem of choosing the
controller (10) — (12) parameters k,1,o satisfying
the theorem conditions (see expressions (A.4), (A.7)
and (A.8)). Possible variant of tuning the coefficients
k, 4,0 is to increase them as long as the purpose
condition (3) is executed.

For realization of this idea we use the following
algorithm

- t
k®)=[u(r)dr, (23)
t0
where k =k +4 and function H(t) is calculated in
the following way

Hy  for [e®)]= A,
u®) =
0 for |e(t)<a,
where number g, > 0.
Choose o in the following way

c=0,k?, (24)

where number o, > 0.

It is obvious that with such calculation of k,A, o
exists a point of time t, >t, for which, condition
(17) and inequalities (A.4), (A.7), (A.8) are executed.



5. SIMULATION RESULTS

Let us consider the Two-Stage Chemical Reactor
with Recycle Streams (Nguang, 2000):

. 1
4=~ a0-ubu
1-R,(t
+—7%lgm, 25)
zxw=—gi0zxo—%aﬂxn+Ti”aa—ﬂ
+R2(t) zz(t—r)+iu, (26)
2 V2
Y = 2,0 @7)

where z,(t) and z,(t) are the compositions, R, and
R, are the recycle flow rates, ¢; are the reactor
residence times, v, are the reaction constants, F, is

the feed rate and V, are the reactor volumes.

Choose control law according to equations (10) —
(12)
u=-@g(p)k+1)e=—~(p+)k+A)e
= _(p+l)k§1 = _(kgl + k§1)_k§1,

& =o(-ks +ke)y=o(-¢ +e), (29

(28)

where polynomial ¢(p)= p+1 and coefficient k =I.

To tune the parameters K and o we use the method
proposed in the previous part. Assigning the
precision A =0,05 and command  signal
y*(t)=sint+0,5c0s 0,3t we simulate the system
for p,=5 and o,=03. Results of computer
simulation for unknown time-varying
parameters ¢, =2cos3t ¢, =2, R =0,25cost e,
R, =05, v, =2+40,3sin0,1t+0,7sin2t , v, =0,3,
V,=V,=F,=0,5 and 7 =2 on variables e(t), u(t)
and l?(t) are presented in the Fig. 1 — 3 accordingly.
Computer simulation graphics for y(0)=0 and
€(0)=0 illustrate the achievement of proposed

control purpose.

Let us consider one more time-varying plant:

{;=h+@ama—ﬂ, 30)
I, =u+wW+6,(t)z;(t-17),
y=1, (31)

where 6,(t) and 6,(t) are unknown time-varying
parameters, W(t) is unknown disturbance, 7 is
delay.
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Fig. 1. Transients in control system for variable e(t) .
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Fig. 2 Transients in control system for variable u(t).
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Fig. 3. Transients in control system for variable E(t) .

Choose control law according to equations (10) —

(12)
U=—g(p)k+A)e=—(p+1)k+A1)e

——(p+DKE =—(k& +KE)—KE  (32)
& =o(-k/& +kie)=o(=& +e),  (33)

where polynomial ¢(p)=p+1 and coefficient

k =1.

Assigning the precision A=0,1 and command signal
y*(t) =sin(t) we simulate the system for g, =2
and o0, =0,2. Results of computer simulation for

unknown time-varying
6,(t)=2+sin0,It +sin10t,

parameters
6, (t) =2cost,



disturbance w(t)=2+cos3tand =3 on variables

e(t), u(t) and l?(t) are presented in the Fig. 4 — 6
accordingly.

Computer simulation graphics for y(0)=0 and
€(0)=0 illustrate the achievement of proposed
control purpose.

0 10 20 a0 40
t,=ec

Fig. 4. Transients in control system for variable e(t) .
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Fig. 5 Transients in control system for variable u(t).
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Fig. 6. Transients in control system for variable IZ(t) .

6. CONCLUSION

In the work the problem of synthesis of the output
control for time-varying system (1) is considered.
The control law (10) — (12), (23), (24) providing the
execution of the control purpose (3), was designed.
Adaptation algorithm (10) — (12), (23), (24) has
dimension equal to p, where p is a relative degree

of transfer function H(p)=S(pl - F)*l L= bE p; of
a(p

system (1).

The advantages of the proposed approach consist in

the following:

e in comparison with (Tsykunov,1996) more
general form of time-varying system is
considered, but not a special case of structures of
description matrixes of time-varying plants when
the time-varying part is coordinated with control
input as in (Tsykunov,1996);

e in contrast to work (Tsykunov,1996), the proposed
controller is an output controller so the output is
the only measured variable;

¢ intensifying the result represented in work (Zhang,
et al., 2003), an assumption, that the plant is
affected by unknown bounded disturbance, is
proposed;

e in contrast to algorithm from work (Zhang, et al.,
2003), proposed control scheme is easier in
realization, does not require 5n—m additional
filters and allows synthesizing adaptive controller
of fixed order p , which depends only on relative

degree of transfer function

H(p)=S(pl -F)'L :@, but not on number
a(p)

of unknown parameters as in work (Zhang, et al.,
2003);

The disadvantage of the proposed controller in
comparison with works (Zhang, et al., 2003; Marino
and Tomei, 2000; Marino and Tomei, 2003) is the
following:

e matrix L was considered to be time-invariant.
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APPENDIX
Proof of the theorem.
Consider the following Lyapunov function

t
Vv =xTPx+nTNn+yje2(w)dw. (A.1)
t,

T

Differentiating (A.1) on time in view of the equations
(16) and (21) we obtain

V =x"(ATP + PA)x+2(k + A)x"Pbh" 7
+2x7P iz”lqiai (De(t—7)— 24x" Pbe + 2x" Pbf
+ 77_T o(T"N + N7 + 25" Nhc' Ax
+2(k + A)5" Nhc™bh"7 + 257" Nhc” %qﬁi (He(t-7)
—22n" Nhc"be+2n" Nhc' bf + 52 —;ez(t—r) , (A2)

where instead of the function é of system (21) and
(A.2) the following item was used

é=c' (Ax—Abe +bf + (k +A)bh"7 +
20,6, (De(t-7)).

Substituting in (A.2) the equations (17) and (22) and
taking into account correlations

2(k+ )X Pbh 7 < (k + 2)(5 X" Pbb" Px+ 6 hh' ),
2X'P 3.6, (e(t—7)
i=1
2

<& Px+ 8T8 et -7)
i=l

2x"Pbf < Ax"Pbb"Px+ A2,

277" Nhc" Ax < 57'n"Nhc" AATch" N7z + 5 x" X,
2(k + A)n"Nhc'bh'n
<(k+2)(;"Nhc'bb'ch' N +7"hh'n),

257" Nhc 21 g6 (et —7) < An"Nhc ch™N7
2

+4713.0,6, (he(t 1)

— 227" Nhc"be <511 Nhe"ch™ N7 + 82T Pbb' Px,,
27" NheTbf < 247" NhcTbbTch™ Ny +%/r‘ f2

for the derivative of Lyapunov function (A.1) we
obtain

V < —xTle—m;Tqu—%/le Pbb’ Px—%ﬁ,ez
+0(k+A)x Pbb"Px+ 87" (k+A)n"hh'n + 5x"P*x

n 2
+57 30,6, (te(t—7) + Ax"Pbb’Px
i=1

+(k+A)n"Nhc'bb"ch" N7 +(k + 2)n"hh'y
+67'7"NhcT AATch" N7 + 8 X" x + An" Nhc'ch' N7
2

+ 8T PbbPx + A7 (30,6, (De(t—7)
i=1

+07'An"Nhc ch" N7 +247"Nhc'bb'ch"N7

+%/1’lfz+7e2—}ez(t—r), (A3)

where the number 0< 6 S% satisfies the following
condition
—Q, +5 I +(k+ 2&—%/1)PbbT P
+0P?<-Q<0. (A4

Substituting expression (A.4) in an inequality (A.3)
we obtain



V<—x"Qx-0on'Q,n —%zez +57"(k+)n"hh'y
2
+67' (30,0, (et—7) +5 7" NhcT AATch Ny
i=1

+(k+A)"Nhc"bb ch" N7 + (k + A)"hh' 7

2

+An"NhcTch™ N7 + /1-"i 0,6, (Ve(t—7)
i=1

+07'An"Nhc"ch"N7 +247"Nhc'bb'ch" N7

+%/1’1f2+7e2—}ez(t—r). (A.5)

As the function 6,(t) and each element of vector
2

are bounded, for the norm ‘anqiei et-7) is
i=1

possible to find such positive number C, that the
following condition is executed
2

(A.6)

Coe(t— Z')z 2 ‘% q;0; (et —7)
Let number A satisfies the following inequality
A22C, [l+l . (A7)
A 6

Let number o such, that the following correlation is
executed

—-0Q, + &' (k+A)hh" + (k + A)Nhc"bb ch™N
+(k+A)hh" + 5 'Nhc" AATch"N + ANhc'ch™N
+2ANhcbb'ch™N +5'ANhc"ch™N <-Q. (A.8)

Substituting expression (A.8) in the inequality (A.5)
we obtain

V<-xX'Qx-7'Qpn —%zez +%I1 f2

+(5-1+,1")‘Zn:qi€i(t)e(t—r) . (A9

Taking into account condition (A.6), for the
inequality (A.8) we obtain

V <—x"Qx—7"Qp —%/lez +%/1‘1f2

+(H+ATC, €7 (t-1)+se7 —je (t-7). (A.10)

Choose y in the following way:

y="+aNC,. (A.11)

Substituting expression (A.11) into (A.10) obtain

V<-x"Qx —n"'Qpn —%le2+%[1f2
1 c, C
+( 8+ AC, et =X Qx—7"Qy—| = A-—2L _Z0 |2
( )Co Qx—-nQn >4 7
3 4z
Ty (A.12)
2
Substituting the inequality (A.7) into expression
(A.12), we obtain

Y% s—xTQx—qTQn+%/1‘lfz

s—xTQx—ryTQ77+%/1’1C,, (A.13)

where numbers v >0 and C, = max{ fz} .

From expression (A.13) we obtain that all system
(16), (21) trajectories are bounded and there exists a
number A >0, that the control purpose (3) is
executed.



