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Abstract

In this study, machine learning algorithms are em-
ployed to calculate state-to-state transport coefficients
in nonequilibrium reacting gas flows. The focus is on
the evaluation of thermal conductivity, shear viscosity,
and bulk viscosity coefficients under conditions of strong
coupling between vibrational-chemical kinetics and gas
dynamics. In order to solve a regression problem for
evaluating state-to-state transport coefficients, a specific
software application with user interface is developed,
which allows loading, processing, and saving of data ar-
rays; configuring model architecture; training and eval-
uating models with various optimizers, loss functions,
and metrics; making predictions using trained models.
Using the developed software the multi-layer percep-
tron regression model is constructed and trained. The
model is assessed in a binary mixture of molecular and
atomic nitrogen taking into account 48 vibrational states;
the coefficients are computed in the wide temperature
range for the varying mixture composition. Good agree-
ment of the results with the original transport coeffi-
cients calculated using rigorous but computationally ex-
pensive kinetic theory algorithms is shown. Applying
machine learning techniques yields a significant speed-
up of about two orders of magnitude in the computation
of transport coefficients. It is concluded that implemen-
tation of machine learning methods may considerably
reduce the computational efforts required for nonequi-
librium flow simulations.
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1 Introduction

In modern aerospace applications, low-temperature
plasma technologies, environmental problems gas flows
are usually far from thermal and chemical equilibrium,
which makes fluid-dynamic simulations rather challeng-
ing. Under nonequilibrium conditions, it is necessary to
take into account excitation of internal degrees of free-
dom (translational, rotational, vibrational, electronic),
chemical reactions, and ionization. Depending on the
flow conditions, characteristic times of internal energy
transitions and chemical reactions may vary by several
orders of magnitude, and sometimes become compara-
ble to the mean time of variation of fluid-dynamic pa-
rameters such as velocity, pressure, and temperature. In
this case, there is a strong coupling between physical—
chemical processes and gas dynamics, which alters the
set of governing equations and its closure.

In nonequilibrium gas dynamics, physical models of
various complexity can be developed on the basis of ki-
netic scaling corresponding to specific deviations from
equilibrium [Nagnibeda and Kustova, 2009]. Among
different approaches, the most detailed is the state-to-
state (STS) model based on the assumption of fast trans-
lational and rotational relaxation and slow vibrational-
chemical kinetics fully coupled to fluid dynamics [|Gior-
dano et al., 1997; |Armenise et al., 1999; /Armenise and
Kustova, 2014; [Bonelli et al., 2021]]. The set of STS
governing equations includes conservation equations for
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mass, momentum, and total energy coupled with balance
equations for the vibrational level populations and the
mass fractions of chemical species. The number of equa-
tions, depending on the mixture composition, ranges
from several tens to several thousands. For inviscid
gas flow simulations, some coarse-graining techniques
aimed at reducing computational costs of the STS model
can be applied [Munafo et al., 2014} |Sahai et al., 2017].
Although these methods show high efficiency in mod-
elling inviscid flows, their application to viscous flow
simulations is limited since the transport kinetic theory
has not yet been developed for such approaches.

For the closure of extended fluid-dynamic equations
in the case of viscous flows, constitutive relations are
required for the stress tensor, diffusion velocities, and
heat flux. In the STS approach, these constitutive re-
lations involve state-specific transport coefficients (ther-
mal conductivity, shear viscosity, bulk viscosity, diffu-
sion, and thermal diffusion) that have to be evaluated us-
ing accurate kinetic theory transport algorithms based on
the generalized Chapman—Enskog method [Nagnibeda
and Kustova, 2009]. To implement these algorithms for
gas mixtures with vibrational and electronic excitation,
chemical reactions, and ionization, software packages
KAPPA [Campoli et al., 2019] and PAINeT [Istomin
and Oblapenko, 2018} |Istomin, 2018} |Istomin, 2019]
were designed earlier by the authors. These packages
can be coupled with computational fluid dynamic (CFD)
solvers to provide the transport properties of nonequi-
librium reacting gas mixtures, but their computational
cost remains prohibitively high. The reason is that the
rigorous transport algorithms require solving high-order
systems of linear algebraic equations in each cell of
the computational grid. Therefore, development of new
techniques for faster calculation of state-specific trans-
port coefficients in the STS approach is of vital impor-
tance for the nonequilibrium viscous reacting gas flow
simulations.

Recent studies have shown that machine learn-
ing methods, including neural networks, have poten-
tial for simulating nonequilibrium gas-dynamic prob-
lems [Stokes et al., 2020; Schmudt et al., 2019; |Brun-
ton et al., 2020]. The use of machine learning meth-
ods for modeling of physical systems has grown sharply,
see [Fradkov, 2022; Plotnikov et al., 2019; [Fradkov
and Shepeljavyi, 2022]]. Machine learning methods help
to accurately predict physical quantities by processing
large amounts of available data, which significantly re-
duces computational effort and allows for implementing
detailed models of physical-chemical kinetics and trans-
port processes [Istomin and Kustova, 2021; |Campoli
et al., 2022; Bushmakova and Kustova, 2022]. In our
preliminary studies, we used neural networks to speed
up the evaluation of specific heats, thermal conductivity,
and shear viscosity for single-component gases and sim-
ple mixtures, which resulted in a speed-up ratio of up to
103 [Istomin and Kustova, 2021]]. Similarly, using a neu-
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ral network approach for modeling carbon dioxide vibra-
tional kinetics significantly improved the efficiency of
the relaxation rate computations [Gorikhovskii and Kus-
tova, 2022].

Although machine learning techniques are promising
for nonequilibrium fluid dynamics, their implementation
is limited because most practical work occurs through
the high-level libraries, such as TensorFlow [Abadi et al.,
2015|] and Scikit-learn [Pedregosa et al., 2011]. The
use of these libraries considerably slows down the so-
lution of the problem, since it is necessary to study the
libraries’ application programming interface (API) and
the intricacies of the programming language. To over-
come these limitations, in the present study we develop
an open-source software package [Istomin et al., 2022]]
with a user interface for processing raw data, building,
training, and analyzing the model, and presenting the re-
sults in an interactive format. This package allows users
to focus on solving the problem itself and quickly change
the necessary model settings during the analysis.

The objectives of this study are: 1) to calculate
state-specific transport coefficients (thermal conductiv-
ity, shear and bulk viscosity) for a binary gas mixture
using both accurate kinetic theory methods and the de-
veloped software package with machine learning (ML)
techniques; 2) to assess the accuracy and efficiency of
the developed ML approach; 3) to recommend a suitable
ML approach and possible neural network architecture
for the evaluation of the transport coefficients.

2 State-to-state fluid-dynamic equations

The energy ¢ of each molecule in the gas includes con-
tributions from the translational energy associated with
its motion as a whole, rotational energy connected to
the rotation of atoms in a molecule about its center of
mass, vibrational energy related to the oscillations of
atoms about their equilibrium position, and electronic
energy specified by the location of electrons in the elec-
tronic shells. Atomic species only have electronic in-
ternal energies. While translational motion is usually
described classically, internal modes are treated in the
framework of quantum mechanics, allowing for discrete
energy states in each internal mode. The number of in-
ternal states is determined by the energy of dissociation
and ionization.

When the gas undergoes sudden heating or cooling,
it goes out of equilibrium. A new equilibrium state is
achieved through the relaxation processes involving en-
ergy transitions between various internal degrees of free-
dom and chemical reactions. As mentioned previously,
the characteristic times of different collisional processes
can vary considerably depending on the flow.

In the present study, we consider nonequilibrium flows
of reacting gas mixtures under the following relation be-
tween the characteristic times of elementary processes:

Ter < Trot <K Tvibr ™~ Treact ™ 07 (1)
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here 7, and T7,,; are the characteristic times for trans-
lational and rotational relaxation, respectively; 7, is
the characteristic time of vibrational relaxation including
both vibrational-vibrational and vibrational-translational
energy transitions, T,.q..¢ 1 the characteristic time of
chemical reactions, and 6 is the mean time of the varia-
tion of gas-dynamic parameters. Under such an assump-
tion, relaxation of vibrational energy and chemical reac-
tions are fully coupled with fluid dynamics [Nagnibeda
and Kustova, 2009].

To derive the set of extended fluid-dynamic equations,
we start with the dimensionless form of the Boltzmann
equation for the distribution function. Based on kinetic
scaling (1), the collision operator is split to the operators
of rapid processes proceeding in the microscopic scale
(Ttr» Trot) and slow processes (Tyibr» Treact) OCCUITING at
the fluid-dynamic scale; the small parameter € = 7, /0 is
introduced according to (I)). In the framework of the gen-
eralized Chapman—Enskog method we expand the distri-
bution function into the series in € and derive the set of
governing equations for the macroscopic flow parame-
ters [Nagnibeda and Kustova, 2009]. The closure of gov-
erning equations depends on the number of terms kept in
the expansion of the distribution function.

In the case of the absence of external forces and mag-
netic fields the governing equations corresponding to ki-
netic scaling (1)) are obtained in the following form:

dn,.
e, + nciv -v+ V- (n(:iVC'i) =
dt
ch;iibr +R£fa6t7 (2)
c=1,.,L, i=0.Le,
dv
an ’ 3)
U

here n., is the number density of chemical species c on
the vibrational level ¢ (in case of molecular species) with
the corresponding energy e.,; €., = Evibr,c() + €7
where €,y (7) and e . are vibrational and formation
energy per particle; the number of species in a mixture is
L, and the number of vibrational levels for the species ¢
is L.; v is the gas velocity, U is the total specific energy,
pU = %nk‘T + pUrot + Zcﬁiemci, n = Zc’i Ne,s k
is the Boltzmann constant, 7" is the temperature, U,.,¢ is
the specific rotational energy, V., is the diffusion veloc-
ity of c-species for each vibrational state i, p is the mix-
ture density, P is the pressure tensor, q is the heat flux;
Ryeoct, job" are production terms due to chemical reac-
tions and vibrational energy transitions. Note that in the
case of atomic species, the right hand side of (2)) includes
only R.¢*“*, while for molecular species all production
terms have to be taken into account.

The number of master equations (2) depends on the
mixture composition. Thus, in polyatomic gases like
carbon dioxide, there are several thousands of cou-
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pled vibrational states below the dissociation threshold
[Kunova et al., 2020], which yields the corresponding
number of equations. In the present study, we consider
a simple case of a binary mixture (N2, N) including two
chemical species (L = 2) and 48 vibrational levels of the
nitrogen molecule (Ly, = 48).

In the first-order approximation of the generalized
Chapman-Enskog method, the expressions for the pres-
sure tensor, diffusion velocity, and heat flux in a viscous
flow are derived in the form

P=(p—prea—CV-v)I 2785, 5)
Ve, = =Y Dea,de, — D, VInT,  (6)
d,j

q=-NVT — pZDTCi d., +

c,t

5
> <2kT+ < Ee >rot +sci> ne,Ve,. (7)

c,i

Here S and I are the traceless deformation rate tensor
and the unit tensor, d., is the diffusive driving force for
each vibrational state ¢, < €, >, is the averaged rota-
tional energy of molecular species c; p is the pressure,
n is the shear viscosity coefficient, ¢ is the bulk vis-
cosity coefficient, p,; is the relaxation pressure, Dy, 4,
and Drp., are the multi-component diffusion and ther-
mal diffusion coefficients for different chemical species
and vibrational states, A’ is the partial thermal conduc-
tivity coefficient. It is worth noting that in the state-
specific approach, the partial thermal conductivity coef-
ficient )" is specified only by the translational and rota-
tional (for molecules) degrees of freedom, whereas the
transport of vibrational energy is governed by diffusion
processes and can be strongly affected by nonequilib-
rium kinetics of vibrational states. Bulk viscosity, which
occurs due to the finite rate of internal energy relaxation
in the rapid processes, is specified in the STS approach
by the rotational energy transitions; this phenomenon is
important in compressible flows with high velocity di-
vergence, such as shock waves. Relaxation pressure de-
scribes the effect of slow processes (vibrational relax-
ation and chemical reactions) on the normal stress.

For numerical simulations of viscous gas flows in the
STS approach, it is necessary to solve equations (2)—(#);
this includes calculation of all state-specific transport co-
efficients as well as relaxation terms jobr, R in
each cell of the computational grid. The number of cells
reaches hundreds of millions and even more, depending
on the flow geometry. Direct implementation of machine
learning techniques for solving partial differential equa-
tions (2)-(@) is hardly possible; nevertheless, one may
attempt to speed up evaluation of transport and relax-
ation terms.



CYBERNETICS AND PHYSICS, VOL. 12, NO. 1, 2023

3 Transport coefficients
3.1 Exact algorithm

Accurate kinetic theory algorithm for the trans-
port coefficients evaluation consists of the following
steps [Nagnibeda and Kustova, 2009|]. First, the first-
order distribution functions is derived in terms of the
gradients of macroscopic flow parameters (velocity, tem-
perature, and species number densities); coefficients at
the gradients are unknown functions of molecular ve-
locity; for these unknown functions the integral equa-
tions are derived. Next, the transport coefficients are ex-
pressed in terms of the bracket integrals with respect to
the above-mentioned unknown functions. In the kinetic
theory, a bilinear form [A, B] (where A and B are the
arbitrary functions of molecular velocities) is referred to
as a bracket integral [Nagnibeda and Kustova, 2009]:

[A,B] = Z/Bcijfcij(A)duc- (8)

cij

The bracket integrals are introduced on the basis of the
linearized integral operator I;; of rapid processes [Nag-
nibeda and Kustova, 2009], u. is the velocity of species
c. In the state-to-state approach, the integral operator
I.;; is determined by the cross sections of elastic colli-
sions and collisions leading to the change of rotational
state j.

In the next step, the unknown functions in the expres-
sion for the first-order distribution function are expanded
into the series of orthogonal polynomials, which allows
one to reduce the initial integral equations to the systems
of linear algebraic equations and express the transport
coefficients in terms of the expansion coefficients. Co-
efficients in these systems depend on the collision inte-
grals obtained by simplifying the bracket integrals. The
order of linear systems depends on the number of terms
retained in the expansions; for the state-to-state model,
the order ranges from several tens to several thousands.
Finally, the linear transport systems are solved numeri-
cally.

To assess our approach we choose evaluation of state-
to-state thermal conductivity, shear viscosity, and bulk
viscosity coefficients in a (N3, N) mixture. In this
simple case, the mixture comprises 48 vibrational lev-
els of molecules and atomic nitrogen, resulting in 49
species in total. Calculation of thermal conductivity,
shear viscosity, and bulk viscosity coefficients (A, 7, ()
requires solving 147, 49, and 98 linear algebraic equa-
tions, respectively. Note that the STS transport coeffi-
cients are functions of temperature, pressure and num-
ber densities of all species, A = A(T,p,ny, ..., n49),
n = n(T,p,n1,...,n49), ¢ = {(T,p,n1,...,n49). This
rigorous but computationally expensive algorithm has
been implemented in the K APPA library [Campoli
et al., 2019] and PAINeT software package [Istomin
and Kustova, 2021]].
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3.2 ML algorithm

To assess the machine learning algorithms, at the first
step the transport coefficients of the 49-component mix-
ture are calculated using the K APPA software pack-
age. The input vector for the model includes tempera-
ture, pressure, vibrational level populations and atomic
molar fractions, resulting in a total of 51 features for
each target variable. The dataset contains 13,200 sam-
ples of these features for each coefficient, where values
below le — 7 are set to zero. The reliability of data is
confirmed by the validation of the kinetic theory algo-
rithms against experimental data carried out in our previ-
ous studies [Campoli et al., 2019]]. Subsequently, all val-
ues are scaled using the StandardScaler from the Scikit-
learn library. Furthermore, the dataset is split into train-
ing and test sets, with proportions of 0.9 and 0.1, respec-
tively.

input ‘ InputLayer dense_1 | Dense dense_2 | Dense

input: | output: —  input: | output: > input: | output:  —
[(None, 51)] I [(None, 51)] (None, 51) I (None, 51) (None, 51) | (None, 100)

dense_3 ‘ Dense dense_4 | Dense

—> mput: | output: — input: | output:  —»
(None, 100) | (None, 100) (None, 100) | (None, 50)

dense 5 | Dense output I Dense

— input: I output:
(None, 50) | (None, 50)

input: I output:
(None, 50) I (None, 1)

Figure 1. Model architecture graph.

For the construction of multi-layer perceptron regres-
sion model, the software application developed for the
present study is used (description is given in the next
section). The graph of the regression model applied to
calculate all coefficients is shown in Fig.[I] The Input
layer contains 51 values of the considered features, fol-
lowed by 5 Dense layers containing 51, 100, 100, 50,
and 50 nodes, respectively. Each of these layers uses the
Rectified Linear Unit activation function (ReLU):

f(z) = maz(0,x).

The last Dense layer contains one node that represents
the predicted value by the regression process and has a
Linear activation function. Overall, the model contains
25,603 trainable parameters.

The model is trained using the Adam optimizer with a
learning rate of be — 5 for 1000 epochs and a batch size
of 512. The validation split, representing the subset of
data not used during training, is set to 0.15 (15% of the
training set). Despite the model’s relative simplicity, sat-
isfactory results are achieved. As shown in Fig. [2] the
Mean Squared Error (MSE) loss function for each coef-
ficient on the training and validation sets quickly reaches
error values of the order of 1e — 5 ~ 1le — 6 due to the



38

Model Loss
0.0010
= Train
Validation
0.0008 -
s
& 0.0006
e
2
©
3
o
w
€ 0.0004 -
()
=
0.0002 A
0.0000 T T T T T T
0 200 400 600 800 1000
Epoch
Model Loss
0.0005
= Train
Validation
0.0004
s
& 0.0003
e
o
©
3
o
w
€ 0.0002 A
()
=
0.0001 4
0.0000 T T T T T T
0 200 400 600 800 1000
Epoch
Model Loss
0.00030
\ e Train
‘ Validation
0.00025 - \
|
5 0.00020 1
& \
- |
o \
© 0.00015 4
o
(%2}
C
©
(]
= (0.00010 +
0.00005 -
0.00000 T T T T T T
0 200 400 600 800 1000
Epoch

Figure 2. Model’s Mean Square Error. From top to bottom: thermal
conductivity, shear viscosity, bulk viscosity.

initial data scaling. Mean Absolute Error (MAE) metric,

tracked during the model fitting for each coefficient on
the training and validation sets, also reaches small val-
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ues after around 200 epochs of training.

3.3 Discussion

The model is evaluated on the scaled test set after train-
ing. TableE] shows the values for the loss function (MSE)
and the tracked metric (MAE), which are considered as
satisfactory. It is evident that for the current task, there
is no difference in the convergence of both metrics. This
is obvious because all the predicted values are positive
and scaled. However, for other problems, such as pre-
dicting diffusion coefficients where values can be posi-
tive or negative in the output vector, the MSE metric is
preferable. Additionally, the MSE metric’s convex and
smooth nature makes it advantageous when using other
optimizers, such as stochastic gradient descent. Further
experimentation with different configurations of model
architecture and training hyperparameters could poten-
tially lead to further improvements in the results.

The model predictions on a test set are also retrieved.
An inverse transformation is applied to the predicted val-
ues to obtain the original scale. Additionally, the val-
ues below le — 7 are set to 0. Fig. |3| presents the ob-
tained results. All the graphs are plotted for different
mixture compositions, depending on the atomic nitrogen
molar fraction zy = nx /n in the mixture (ranging from
0.1 to 0.9). The Boltzmann distribution over vibrational
states is chosen for the model assessment, although ar-
bitrary vibrational distributions can be used in general.
For the Boltzmann distribution, all coefficients increase
monotonically with the temperature. Under the consid-
ered conditions for the mixture (N5, N) the thermal con-
ductivity coefficient increases with rising atomic molar
fraction, while both viscosity coefficients decrease. It
is worth mentioning that the bulk viscosity coefficient is
comparable to the shear viscosity coefficient, and there-
fore, its contribution to the normal stress may be impor-
tant in nonequilibrium compressible flows.

Contrary to the conventional statistical methods, the
use of machine learning algorithms can handle a larger
number of variables such as the manifold of molar frac-
tions of different internal states. This enables us to ef-
fectively handle complex interactions within the dataset,
resulting in more accurate predictions, and consolidates
the choice of machine learning (ML) over conventional
statistical methods for our problem. However, this also
poses a need for a greater number of input-output pairs
to learn the model, which can be considered a limita-
tion of the ML algorithm. Considering the accuracy of
the regression model for transport coefficients, it is ev-
ident that the model fits very well to the original trans-
port coefficients obtained by exact kinetic theory meth-
ods for every mixture composition. The final accuracy of
the trained model, defined in terms of relative error (as
shown in Table , is found to be around 99.5% on the
predicted values after transformation, indicating a high
level of agreement between the predicted and actual val-
ues.
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Table 1. Model evaluation results.
TC
Thermal conductivity ~ Shear viscosity ~ Bulk viscosity
Metrics

Loss (MSE) 2.4255e — 05 1.5613e — 05  9.6022e — 06

MAE 0.0038 0.003 0.0024

Average relative error 0.182% 0.159% 0.506%

The most important achievement is a significant speed-
up in the calculation time. The computational efficiency
of the accurate transport coefficients calculation using
PAINeT (where calculations are already parallelized
on the processors and therefore are more computation-
ally efficient than in K APPA) can be compared with
the efficiency of the machine learning methods proposed
in this paper. The comparison is performed on a per-
sonal computer (Intel Core i5-6500 CPU 3.20 GHz).
For a given output vector (A, 1, (), the neural network
constructed with the new software reduced the compu-
tation time by up to 100 times, from 5.5 seconds us-
ing PAINeT to 0.057 seconds. It is worth mentioning
that this comparison includes the data preparation time
(about an hour) and model training time (nearly 2 min-
utes). Despite this, the decrease in the computational
time for one calculation step is significant. This is es-
pecially useful for 2D and 3D fluid-dynamic problems,
where the number of such calculation steps may be very
high depending on the mesh.

Once the model is configured and trained using the de-
veloped software, it can be stored in the .45 format and
loaded directly as a surrogate model-based engineering
model [Jiang et al., 2020] into external CFD solvers. The
obtained results show promising opportunities for im-
plementing the developed software in CFD solvers for
simulations of viscous nonequilibrium reacting flows.
Moreover, based on the given approach, the developed
software can be implemented in other research fields.

4 Software Application Description

The software application developed for this study is
written in Python 3.10 [Python Software Foundation,
2021] using the Jupyter Notebook [Kluyver et al., 2016]
interactive environment as well as the TensorFlow 2.10
Functional API. It is worth mentioning that the notebook
can be opened and used in Binder [Project Jupyter et al.,
2018]] environment. The notebook is organized into sep-
arate cells for distinct modules, including data prepara-
tion, model configuration, model training, model eval-
uation, and model predictions. Gradual compilation of
each sell leads for project step-by-step build-up proce-
dure.

As the first step, the training data must be prepared:
To ensure compatibility with TensorFlow, the data must
first be converted into a NumPy format [Harris et al.,
2020]. The data file containing all the feature head-
ers can be placed inside a separate repository folder and
then loaded from the notebook. It is important that data
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should be loaded in either .csv or .zsv format initially.
Next, columns can be selected as model inputs and out-
puts, and the data can be split into train and test portions.
Finally, the data will be automatically converted into a
.npy format for further training of the model.

The next step is to build the model. For this purpose,
the TensorFlow 2.10 API is used, which allows one to
build quite flexible models with a different number of
layers. In the application it is possible to either upload
an existing model and reconfigure it or create a new one.
It is possible to use different activation functions in each
layer: Linear, Hyperbolic Tangent (fanh) or Rectified
Linear Unit activation function (ReLU). After construc-
tion of the model, the summary and graph representation
can be displayed in separate tiles. Once the configuration
is complete, the model can be saved in the .45 format for
future use.

Once all the settings have been specified, the model
can be compiled. This involves selecting an optimizer
along with appropriate hyperparameters and a suitable
loss function. After the model compilation, the next
step is to train the model. This involves choosing hy-
perparameters such as the batch size, number of epochs,
etc. Once the training process begins, the corresponding
cell output will interactively display the progress of the
model.

Finally, the user can view the history plots, which dis-
play the loss functions and tracked metrics during the
training and validation stages. The trained model can
also be saved for future use. The last two cells of the
notebook are responsible for evaluating the model on a
test set and making predictions.

The software documentation, source code, and the link
to the Binder environment can be found in the original
repository, which is accessible at [Istomin et al., 2022].

5 Conclusion

Machine learning methods for modelling state-to-state
transport coefficients are considered. A regression
model capable of calculating state-specific thermal con-
ductivity, shear viscosity, and bulk viscosity transport
coefficients is built using the software application with
a user-friendly interface that utilizes modern machine
learning libraries; the software is designed in the frame
of this study. The model is fitted and evaluated on
training and test sets, and its predictions are compared
with actual values of transport coefficients obtained in
the framework of accurate kinetic-theory methods. The
analysis of the considered metrics and visual illustrations
confirm that the developed neural network architecture is
suitable for calculating the STS transport coefficients.

The architecture comprises a few Dense layers with
ReLU activation functions. Despite its relative simplic-
ity, the model achieves a good convergence to the orig-
inal values, demonstrating great predictive ability. De-
pending on the application, different data preprocessing
techniques as well as deeper architectures may be con-
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sidered to obtain even better results. Additionally, the
model simplicity provides a fast inference time, signifi-
cantly accelerating the calculation of resource-intensive
quantities.

In the present study, a speed-up of about two orders of
magnitude is achieved for a single computation of trans-
port coefficients; for real fluid-dynamic simulations, the
gain in computational efficiency will be considerably
higher since the complete set of transport coefficients is
calculated in each cell of the grid.

This approach presents a novel way to convert accurate
research computational models into computationally fast
and precise machine learning models, which can be con-
veniently built using the provided software package.
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