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Abstract

The problem about stability of the movement of the
elastic plate, which is a part of the border dividing the
areas filled with viscous incompressible liquid, is
considered. The research method based on creation of
Lyapunov's functionals for the related nonlinear
system of the partial differential equations for the
unknown aerohydrodynamic functions and
deformations of plate is used. The sufficient stability
conditions of the movement of an elastic plate
imposing restrictions on the parameters of mechanical
systemare received.
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1 Introduction

At the design and exp loitation of structures, devices,
mechanisms for various applications, interacting with
liquid, an important problem is to ensure the reliability
of their functioning and longer life. Similar problems
are common to many branches of engineering. In
particular, such problems arise in missilery, aircraft
construction, instrumentation, and so on. The essential
value in the calculation of structures that interact with
the liquid has a stability study of the deformable
elements, as the impact of the liquid may lead to its
loss.

Thus, at designing of the structures and devices
interacting with the liquid, it is necessary to solve
problems related to the investigation of stability

required for their functioning and operational
reliability.
Many theoretical and experimental studies is

devoted to the stability of elastic bodies interacting
with the gas and liquid. Among the studies we should
be noted studies [Ageev, Kuznetsova, Kulikov,
Mogilevich and Popov, 2014; Kheiri and Paidoussis,
2015; Kontzialis, Moditis and Paidoussis, 2017,
Moditis, Paidoussis and Ratigan, 2016; Mogilevich,
Popov, Popova and Christoforova, 2016; Mogilevich,
Popov, Rabinsky and Kuznetsova, 2016; Naumova,
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Ivanov, Voloshinova and Ershov, 2015; Sokolov and
Razov, 2014; Zvyagin and Gur’ev, 2017] and many
others. Among the works of the authors of this article,
note the articles and monographs [Ankilov and
Velmisov, 2013, 2015, 2016; Velmisov, Ankilov and
Semenova, 2016].

Taken in the work determination of stability of
elastic body correspond to the Lyapunov concept of
stability of dynamical systems. The problem can be
formulated as follows: for any values of the
parameters characterizing the system «liquid-solid» to
the small deformations of bodies at the initial time
t=0 (e, a small initial deviations from the
equilibrium position) will correspond to small
deformations and at any time t>0.

2 Mathematical model

We investigate stability of the movement (by
Lyapunov) an elastic plate which is a part
(x=a,y, <y<y.) of the border L, dividing two
areas S and S,, filled with viscous incompressible
liquid. Areas S,,S, have border L,L, and L, any

form.
We enter designations: u(y,t) and w(y,t),
y € (Y,,y.) are deformations of an elastic plate in the
direction of axes of Oy and Ox respectively;
v, (X, y,1), (X, S,
vl(x,y,t):{ L6y 1), (X y) €S,
Vi, (X, ¥,1), (X, Y) €S,
v,, (X, ¥,1), (X, S,
v, (%, ')={ 2 (X Y1), (X y) €S,
Voo (X Y51), (X, ) €S,
are liquid velosity vector projections;
P(x y,1), (X, S,
P(X,y,t):{ l( y ) ( y)e 1
PZ(Xv y!t)r (X, y) € SZ
A function w(y,t)eC*? {[yo,y*]x R*}, ie. it

belongs to four times continuously differentiable
functions with respect to the variable y on the

is pressure in liquid.

interval (y,,y.) and twice continuously differentiable
with respect to the variable t at t >0 and takes real



values. A function u(y,t) e C**{[y,,y.]xR"}, ie. it
belongs to twice continuously differentiable functions
with respect to the variable y on the interval (y,,y.)
and twice continuously differentiable with respect to
the variable t at t >0 and takes real values.

The functions v, (x,y,t), Vv,(X,y,t), P(xy,t)e

eC*{S,xR"}, ie. it belongs to twice continuously

differentiable functions with respect to the variables
X,y in the area S, and continuously differentiable
with respect to the variable t at t >0 and takes real
values.
The mathematical definition of the problem has an
appearance

PV + YV + VoV ) = =P+ (Vi +Vy ),

_ (1)
(x,y) €S US,;
P (Vo + ViV, +V2V2y) =-R + p (Vo +V2yy)l @)
(x,y)e S, US,;
Vi, Vo, =0, (%, y) €S, US, ; )
v,(L)=v,(L)=0, k=1,2; (4)

Vi (Lo VN (Y0, ¥)) =V, (L \ (Yo, ¥)) =0, (5)
vi(@y,t) =w(y,t), v,(ay,)=0, ye(y,y.); (6)

’

—EF (u’(y,t) +%W’2(y,t)) +Mui(y,t) =0,

! ’ 1 12 nn (7)
—EF| wW'(y,t) u(y,t)+5w (y,t) || + DW""(y,t)+
+MW(y, 1) + N QW (y, 1) + S0 (y, 1) + BW(y,t) +
+BwW(y.t) =R (a y.) =R (a y.1), ye (Yo, Y.)-
The indices X, y, t below denote partial derivatives
with respect to x, y, t; the bar and the point denote the
partial derivatives with respect to y and t, respectively;
p, u are density and dynamic coefficient of
viscosity of liquid; D =Eh®/(@12(1-v?)) is flexural
stiffness of plate; h is thickness of plate; M =hp, is

linear mass of plate; F=h/@1-v?); E, p are
elasticity modulus and the linear density of the plate;
v is Poisson coefficient; N(t) is compressing
(N >0) or tensile (N <0) forces of the plate;
B By
damping; 4, is stiffness coefficient of the base (bed).

Compressive (tensile) force N(t) element may
depend on time. For example, at a non-stationary heat
exposure on the plate the N(t) is as follows:

N (t)= N, + N (1),

are coefficients of internal and external

h/2
TO

®
0 T =Ea [ T(zt)dz,

- ~h/2

N, (t) =

where ¢, - the temperature coefficient of linear
expansion, T(z,t) — the law of temperature change

over the thickness of the plate, N, - the constant

component of force generated at fixing of the plate.
The equations (1)-(3) describe the movement of
liquid in areas S,,S,, the equation (7) describe the
dynamic of a plate; conditions (4)-(6) are conditions
of sticking of viscous liquid.

The boundary conditions at the ends of the plate at
y=Yy, and y=y, can take the form:

1) rigid clamping (fig. 1a):

W(y,t) = W'(yvt) = U(y,t) = Oa (88.)
2) hinge securely fastened (fig. 1b):
W(y!t) = W"(y,t) = U(y,t) = Oa (8b)
3) rigid mobile jamming (fig. 1c):
W(yvt) = W’(y,t) = U’(y,t) = 01 (80)
4) hinged movable anchorage (fig. 1d):
W(y.) =Wy, = U0+ W () 0. (69)
A Ery
A é\% — &
a) b) c) d)

Figure 1. The method of fixing

We will notice that for the description of the
movement of liquid the nonlinear equations of Navier-
Stokes are used, and boundary conditions (6), as well
as the right part of the equation (7), are written down
in the assumption that deformations of a plate are
small.

We give the initial conditions:

w(y,0) = f,(y), w(y,0)= f,(y),

. (9)

u(y,0) = fy(y), u(y.0) = f,(y),
which must be agreed with the boundary conditions
(8). According to the definition of functions w(y,t),

u(y.t): Ry, LN eCly, vl f(y), fi(Y) e
€ C’[y,,y.]- The norms in the spaces C*[y,,y.] and
C?[y,, y.] are defined by the equalities

= d"f(y)| . _

I = sup, max, =g =) 1=12,
= d"fi(y)| . _

[ = svp max |= 2=, =3.4.

Give also the initial conditions:

V(% y,0) = f(x,y), v, (x,y,0)= fs(x,y), (10)
which must be agreed with the boundary conditions
(4), (6) and (6). According to the definition of

functions v, (x,y,t), v,(x, y,t) 1 f.(xy), f,(x,y) e
eC*{S,US,}. The nom in the space C?{G} is
defined by the equality

"R Y)| L

fll= ,1=5,6.
[f|= sup max oy i

0<n+m<2 (x,y)es$;US,




3 Stability inwestigation
Definition 3.1 The solution of the problem (1)-(8) for

five unknown functions u(y,t)eCZ*z{[yo,y*]x R*},

W(y’t)ecltv2 {[yoly*]XR+}’ Vl(xl y:t)u VZ(X! y!t)u
P(x,y,t) eC**{S,US,xR"} is called stable with
respect to perturbations of the initial data (9), (10), if
for any arbitrarily small positive number § >0 exist
number &=¢(5)>0, such that for any functions
L), £.(0)eCYo y1o f(y), £, (y) €CoLyp, ¥
and  f (x,y), f,(x,y) eC*{S,US,}, satisfying the
boundary conditions and the conditions of the
smaliness by the nom |f(y)|<e&|f,(y)|<e,

[t <elftl<e [txyl<e [fxyl<e,
the inequalities |w(y,t)| <&, |u(y,t)|< &,y e[y, V]
and v (x,y,t)[<8, [v,(xy.t)|<s, [P(xy.b)<8,

(x,y) e S,US, will be performed forany time t>0.

The similar definitions of stability with respect to
perturbations of the initial data can be given separately

for the functions themselves u(y,t), w(y,t),
vi(x, y,1), vy (xy.t), P(xyt) and its partial
derivatives.

We enter the designations: 4,, 7, are the smallest
eigenvalues of the boundary value problems for the
equations y"" =-Ay", y"" =ny, ye(Y, Y.) With
boundary conditions corresponding (8) for the
function w(y,t).

Theorem 3.1. Let the conditions

Bom+ B, 20, N(t)>0, (11)
N(t) < A4,D (12)
be satisfied. Then the solution  w(y,t),

vi(X, y,1),v,(x,y,t) of problem (1)-(8) and the
derivatives u(y,t),W(y,t) are stable with respect to
perturbations of the initial data v (x,y,0),

v, (X, y,0), u(y,0), u’(y,0), wi(y,0),w'(y,0), w'(y,0).
Proof. We will write down the equations (1),(2) as

1
p(vlt +V2Vly _VZVZX) = _£P+EIDV2) +ILAV1 ' (13)

1
p(VZt +V Vo, _V1V1y) = _(P +§PV2j + LAV, , (14)
y

where V2 =vZ+v2 is liquid velosity square, A is
laplacian.

Multiplying the equation (13) on v/(x,y,t), the
equation (14) on v,(x,y,t), and adding the received

expressions, with the accounting of the equation of
continuity (3), we will obtain

o]l

_|:V2 [P+%pV2J:| +ﬂ[(V1V1x +V,\,, )+  (15)
y

2 2 2 2
+(VyVyy +VoVp, ), =V, —Vp, = Vs, —sz:|.

Considering the boundary conditions (8), we will
obtain equalities

Y 1 ' Yo l !
—J.w{w'(u%—w’zﬂ dy—fu(u’+—w’2j dy =
Yo 2 Yo 2
¥e Y
:J‘W'W'(u’+iw’2jdy+Iu’(u’+1w’2de=
Yo 2 Yo 2
%, 1 .Y
== ||{u+=w" | dy |,
(o]
o t
Y 1 Y« Ya 1 Ve
[vinidy = =| [viedy |, [uddy ==| [u’dy |,
2 2
Yo Yo t Yo Yo t

yJ’:v‘vw””dy = Tv’v"w"dy = 1[]‘ w”zdyJ
Yo 2 Yo t ,

Yo

(16)

N 0 i dy = ~N) [ wely = —%{N of w’zdyJ +

Yo t

3 3

[unirray = [uray.

Yo Yo

Multiplying the first equation of system (7) on
u(y,t), the second equation of system (7) on vi(y,t).,

and adding the received expressions and integrating
from y, to y., with the accounting of the equalities

(16), we will obtain

1yﬁ , 1 » 2 "
{EI[EF(U (y,t)+5w (y,t)j +MU(y,t)+

Yo

1ot
+=N (t)j w'2dy,
2 Yo

a7
WA (Y, 1)) + DW"? (y,t) = N ()W (y,t) +

Y

+ﬁowz(y,t)]dyj = [(BW" (y,1) + B (y,1) —

Yo
1. " )
We will enter the functional into consideration
_ 1 2 l % ’ 1 12 ?
J(t) _Eljpv dS+E§[(EF (u (y,t)+EW (y,t)] +
+M (U7 (y, )+ W (y, 1))+ DW(y,t) - (18)

- N (t)Wyz (y!t) + ﬂoWZ (y,t)de,
where S =5 US,.
For a derivative % of this functional on time, using

expressions (15), (17) and applying Green's formula,
we find

o _
2-

1
|:_V11 ( P+ _pV12 j + (Vg Vg, + Voy Vg, :|dy +
LUL, 2



1
+ |:V11 (RL + EleZ j - ,U(anuy + V21V21y):|dx +

* §

L,UL,

1
+|:V22 ( P, + EpVZZ j - /u(v12V12y + VoV :|dx - (19)

1
|:_V12 (Pz + EpVZZ j + p (Vi Vi, + Vo5 Va5, }dy +

Ve
_ﬂ_”(vfX +V5, + V3, +V3, )dS —J(ﬂzv'v”z(y,t) +
S Yo

+ﬁ1WZ(y,t)—%N(t)W’Z(y,t)—

~(R(a,y,) =P, (a,y,1))v(y,t))dy.
Considering the boundary conditions (4)-(6) and the
equations (7), we have

\A
0J 1
= c J{—vﬂ (Pl +Epvflﬂdy+
Y,
_ P 1 2 dv — 2 2 2
+_[ Vip| 2 +EPV12 Yy ﬂ”(le +Vpy +Vo, +
Y. s
Y.
+3, Jas - | [ﬂzw”z(y,n +AWA(YH - (20)
Yo

ROW (0~ (R y,t)—Pz(a,y,t))vv(y,t)jdy -

Y.
= —I[ﬁzw”z(y,t) +ﬂ1W2(y,t)—%N(t)W’z(y.t)de—

2
—,u”(vfx +v12y +V2, +v22y )dS.
S

We consider the boundary value problems for the
equations " =-Ay", " =ny, ye(y, Y.) With
boundary conditions (8) for the function w(y,t).

These problems are self-adjoint and completely
defined. For the function w(y,t), using Rayleigh's

inequality [Kollatc, 1968], we obtain the estimates

ity tw(y.dy = 2, | w(y, (. tdy,

Yo Yo

. .. (21)
[ wey.tw(y,tdy = 7, [ w(y,tw(y, tydy.

Integrating by parts taking into account boundary
conditions (8), we will obtain inequalities

TW"Z (y,)dy =4 yj w (y, tydy,

Yo Yo

Y Y
w2 (y,tydy =, [ w (y, tydy.
Yo Yo
Similar considering the boundary value problems for
the equations " = ye(Y, Y.) Wwith

(22)

_ﬂl//”v

boundary conditions (8) for the function wu(y,t) we
obtain the estimate

Yo Y
[ (y,0dy >, [ W (y,t)dy
Yo Yo

(23)
Using the inequality (23) to (20), we obtain

s ((m +/f1)w2(y,t)—§N(t)w’Z(y,t)jdy—
g 24

—y”(vfx +V] VG, Vs )dS.
S

Let the conditions (9) are satisfied, then from (24) it

follows, that %]so_ Integrating from 0 to t, we

obtain the inequality
J(t) < J(0). (25)
We make the evaluations for functional with the
boundary conditions (8). Using the inequalities (22),
we obtain the upper bound of J(0):

— 1 2 2 1 " ’ 1 12 ’
J(0) ——”p(v10+vzo)d8+—.[ EF[U0+—W0 j +
25 25 2 26)

+M (u? +W§)+(D+M+&Jwgzjdy.
A m
Here are introduced the designations v,; =v,(x,y,0),
Vao =V, (X, Y,0), U, =u(x,0), Us =u’(x,0),
W, =W(x,0), wy=w'(x,0), w;=w"(x,0).
Using the first inequality (22), we obtain the estimate
J(t) from below:

1 1%
JO)==||pVidS+= [ (M (u?(y,t)+
2 ﬂ 2 y{( (27)
+W° (y, 1)) + (4D = N (©)w?(y,1))dy.
Using the Cauchy-Bunyakovsky inequality at the
boundary conditions (8), we obtain the estimate

Y

WA (Y, ) < (Y. —Yo) [WP(y.tdy . (28)
Yo

Let the condition (12) is satisfied, then the inequality

(27) takes the form

J(t) Z%yp(vf +v22)dS +%]' M (u?(y,t) +

Yo (29)
+W (y,t))dy +wwz(y,t).
Z(y* - yo)

Thus, taking into account (25), (26), (29), we obtain
the inequality

[Jo (v +v§)d3+yfM(uz(y,t)+vv2(y,t))dy+

LAD=NW® 2 <[[o (v +va)ds +
= Yo S (20)



Y« 2
+j[M(u§ +W.,)+EF (ug +%W(;2j +

+[D+—|N(O)|+&]W32de.
A

From inequalities || fi(y)||<g,i:1,_4, [f.(xy)]| <e,
i=5,6 follows that |v,,|<e, |v,| <&, |Us|<e, |us|<e,
|W0|<8, |W6|<g, And as u(y,t) e
eC*?{[y, v.IxR"},  w(y,t) eC*?{[y,, v.]xR"},
V(X Y1), V(% y,t)eC**{S,US,xR"}, then from

(30) implies, that for any arbitrarily small positive
number 6 >0 exist number g=¢g(5)>0, such that

<é&.

wg

the inequalities |w(y,t)| <&, [W(y,t)| <&, |u(y,t)| <,

yely,y.l and [v(xy.)|<8, |v,(xy.t)|<d,
(x,y) € S;US, will be performed forany time t>0.

The theorem is proved.

On the bask of inequality (30) it is possible to
receive an assessment of amplitude of the greatest
possible fluctuations of an elastic plate at any

timepoint:
Y« = Yo
|W(y,t)| < m\] (0).

4 Conclusion

In work on the basis of the constructed mathematical
model and the Lyapunov’s functional constructed for
this model the research of dynamic stability of the
elastic plate contacting to the fluctuating viscous
incompressible liquid is conducted. Further, using
results of this work, it is planned to conduct a research
of dynamic stability of elastic elements of various
designs which are flowed round by a stream of the
viscous incompressible liquid.
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