
Algorithm of multiple observer-based  synchronization 

for time-varying two-rotor vibration system 
Olga Tomchina, Irina Kudryavtseva 

St.Petersburg Institute of Machine Building 

                                              E-mail: otomchina@mail.ru 
 

 
1. Introduction 

         During recent years the speed-gradient algorithms developed in control engineering area 
[1,2] have been applied intensively to control of oscillatory motion and particularly to control of 
vibration units. Among problems solved by speed-gradient approach are control of vibration units 
in start-up modes (swing-up and passage through resonance) [ 3-5], synchronization [6-8], etc.  
        One of the main arising problems is keeping stable synchronous working mode in order to 
achieve maximum working amplitude of the platform vibrations. Additional opportunities for de-
velopment of vibration equipment, especially for vibrational transportation of materials can be 
provided by using multiple synchronous modes. It keeps constant the ratio of average velocities 
and/or phases of vibroactuators. Unlike simple synchronization modes which can arise spontane-
ously, stable multiple synchronous mode can only be achieved by means of advanced control sys-
tems.  
         In this paper an algorithm of multiple synchronization of two-rotor vibration unit with time-
varying payload is proposed. The performance of the proposed system is analyzed by computer 
simulation for model of the 2-rotor vibration set-up consisting of two rotors driven by DC motors 
and a rigid platform mounted on an unmovable base. A time-varying payload attached to a plat-
form allows one to study dynamics of material processing. Additional problem arises owing to in-
completeness of measurements: only rotor phases are available for measurement. To solve this 
problem an observer (state estimator) is introduced into the system structure. 
 
 

2. Model of  the two-rotor vibration set-up dynamics 
 
The scheme of the two-rotor vibration set-up is presented in Fig.1. Here 21 ,ϕϕ are rotation angles  
of the rotors measured from the lowest vertical position, y is the vertical displacement of the supporting 
body from the equilibrium position, ,m  M are the masses of the rotors and the supporting body, respec-
tively, 21 , JJ  are the inertia moments of the rotors, ρ is the eccentricity of rotors, 10 ,cc are the spring 
stiffness,  g is the gravitational acceleration,  mr  is the mass of the payload, y1  is the vertical displace-
ment of the payload, mMm 20 += . Let us consider only vertical motion of the system.  
 
Kinetic and potential energies T and П are as follows:   
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    Denoting friction coefficient in the bearings of unbalanced rotors by kc and dissipation of the 

lower springs by b, we obtain dynamics equations of the  two-rotor vibration set-up with payload: 



                                        
                 Fig.1. Scheme of the two-rotor vibration set-up. 
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where  21 , MM are the motor torques (controlling variables). 

3.  The base control algorithm for multiple synchronization 

The first step of design of control algorithm by the speed-gradient method [1, 2] is the choice of 
the goal functional according to the desired control goal. In our case the control goal is achieve-
ment of the desired ratio of angular velocities of the rotors. For n-ple synchronization it means 
achievement of minimum (zero) value of the term 2

21 )( ϕϕ && n± . 
Another goal is to achieve the desired level of average angular velocities of the rotors. It corre-

sponds to achievement of the desired average kinetic energy or total energy of the system. There-
fore the goal functional can be chosen as follows: 

                                   })())(1{(5.0)( 2
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2* ϕϕαα && nHHzQ ±+−−= ,                                  (3) 

where  Tyyz ),,2,2,1,1( &&& ϕϕϕϕ= is the state vector of the system; 10 << α  is weighting coeffi-
cient; *H  is the desired level of total mechanical energy.  

Obviously the goal is achieved if Q (z) = 0, otherwise Q (z)> 0. At this stage of design we ne-
glected friction ( 0,0 == bkc ). Applying the speed-gradient methodology we evaluate the speed of 
changing (3) along trajectories of controlled system, assuming that payload mass is frozen. At this 
stage we neglect friction. Then evaluate the gradient of the speed with respect to controlling vari-
ables (torques). The designed base control algorithm is as follows 
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where   γ1>0 and γ2 >0 are control gains. The next step is to introduce observer to overcome in-
completeness of measurements.  
 
                 4. Nonlinear observer: design and analysis 
 
In order to design a simple observer for a nonlinear system we first simplify the system model. 
Omitting the rotor number and neglecting dynamics of optimized current loop, we consider the fol-
lowing model of rotor (vibroactuator) 
                           ( ) ( ) ( ) ( )tМtmgttJ mc =++ ϕρϕκϕ sin&&& ,                                                             (5) 
where mМ  is controlling motor torque. Then the following observer structure can be used. Let 

[ ] [ ]ΤΤ == ϕϕ &,, 21 xxx  be the state vector of the rotor and [ ]Τ= 21 ˆ,ˆˆ xxx  - be the state vector of the 
observer. Neglecting friction in the bearings (kc=0) and rewriting the rotor equation in the state 
space form 
                                              ( ) ( )txtx 21 =& , 
                                              ( ) mMaxatx 231212 sin +−=& , 

     where Ja 1
23 = , J

mga ρ=21  the observer equations for the case when only ( )tx1  is measured 

can be written as follows : 
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    where  0,0 21 >> κκ  are observer gains. In order to establish conditions providing proper work 
of observer write down the error equations for )(ˆ)( txtxе &&& −= : 
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Since the characteristic polynomial of the matrix ΝА  is  
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the matrix  ΝА  is Hurwitz (stable) if both coefficients 1k    2k  are positive.  In this case the limit 
value of the estimation error |e(t)| is bounded for bounded disturbance fN(e(t),t) and it is propor-
tional to the upper bound of the disturbance fN(e(t),t) which is obviously equal to 2|a21|.  Moreover,  
the disturbance nonlinear function  fN(e(t),t)  is Lipschitz with Lipschitz constant equal to one since 
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Therefore for sufficiently small |a21| the error equation is asymptotically stable. Stability condition 
is valid provided eccentricity ρ is sufficiently small. It also can be shown that the reduced observer 
estimates velocities with asymptotically vanishing error. 
        Then control algorithms (4) in the observer based system are as follows: 
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where  Ĥ  depends on estimates of velocities 21
ˆ,ˆ ϕϕ && .  

 



 
5. Comparison of observer based double synchronization system with full measurement case 
 

Let us compare efficiency of proposed observer based algorithm (9) for double synchro-
nization (n = 2) with the algorithm (3)  designed for the case of all state vector measured. 

 
 
 

0 ≤ t ≤ 0,2 s 0 ≤ t ≤ 60 s 
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Fig.2. Dynamics of velocity estimation errors iiie ϕϕ &̂&& −= . 
 

        In Fig.2 the plots of velocity estimation errors iiie ϕϕ &̂&& −=  at the initial time interval and in 
the steady state mode are shown. It is seen that the chosen observer gains 2000,50 21 == κκ  en-
sure convergence of the estimation error practically  to zero after 1s - 2 s which is significantly less 
than synchronization time tsync . 

            
        The table 1 contains values of varying parameters: rate of payload mass change V , initial 
loading time t1, final loading time t2 bounds of varying mass mr algorithm parameters γi , αi as well 
as experimental results taken from simulation plots: synchronization time tsync  which is the time 
until the multiplied phase shift enters 5% zone near its steady state mode, usually a multiple of π), 
tр – which is the transient time for rotor velocities, ∆φst  which is the steady state value of the mul-
tiplied phase shift.  Symbol (I) marks results for  algorithm (4) with full state measurement while 
symbol (II) corresponds to the observer based algorithm (9). The final payload mass in our ex-
periments varies up to the value of 75% from the mass of the supporting platform which is equal to 
9 kg. The maximum value of the rate of payload mass change is V*=0.8kg/s. 

 
 
 
 
 
 
 
 
 



Table 1. – Characteristics of the system with time varying payload 

 
 

1 ≤ mr ≤ 3,5 
 

 
γ1 = 0,02 
γ2 = 0,03 
α1 = 0,25 
α2 = 0,05 

 

 
 

V = 0,05 
 

 
 

t1 = 0; t2 = 50 
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3,5 ≤ mr ≤ 7 
 
 

 
γ1 = 0,02 
γ2 = 0,03 
α1 = 0,25 
α2 = 0,05 

 
 

V = 0,05 

 
 

t1 = 0; t2 = 70 

 
 

5,2838 

 
 

7,7588 
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40 
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In Fig.3,4 simulation results for algorithm (3) with full state measurements and for algorithm (9) 
with observer are shown according to the following notation: a) Platform position y(t), m ;  b) Plat-

form velocity 
•

y , m/s; c) Current value of rotor phases φ1, φ 2, rad; d) Current value of multiple 
phase shift ∆φ= (φ1 - 2 φ2), rad; e) Total mechanical energy  Energy, J; f) Controlling torques М1, 
М2, N·m; g) Rotor velocities 1ϕ& , 2ϕ&  , s-1; h) Multiple velocity shift ( )21 2ϕϕϕ &&& −=∆ , s-1. 
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1 ≤ mr ≤ 2 

 
γ1 = 0,02 
γ2 = 0,02 
α1 = 0,05 
α2 = 0,003 

 

 
V = 0,1 
V = 0,2 
V = 1/3 
V = 2/3 

 
t1 = 0; t2 = 10 
t1 = 0; t2 = 5 
t1 = 0; t2 = 3 

t1 = 0; t2 = 1,5 

 
3,5252 
3,5357 
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3,8556 
3,8557 
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V = 0,3 

 
t1 = 0; t2 = 5 

 

 
1058,4 

 
47,314 
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γ1 = 0,002 
γ2 = 0,002 
α1 = 0,03 
α2 = 0,003 

 

 
V = 2/3 

 
t1 = 0; t2 = 2,5 
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1 ≤ mr ≤ 2.66 
 
 
 
 
 

 
γ1 = 0,003 
γ2 = 0,003 
α1 = 0,09 
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1 ≤ mr  ≤ 3 

 
γ1 = 0,003 
γ2 = 0,003 
α1 = 0,09 
α2 = 0,003 

 

 
 

V = 0,1 

 
 

t1 = 0; t2 = 21 
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Fig.3. Simulation results for algorithm (4) with full state measurement. 
  



 

 
Fig.4. Simulation results for algorithm (9) with observer. 
 

6. Conclusions 
  The main result of our study is demonstration of a stable multiple synchronous mode in vibra-

tion units with changing payload mass for systems with incomplete measurements. Comparison of 
systems with and without observer shows that the system dynamics in both cases are equivalent 
with respect to synchronization time and value of control signals when the payload mass changes 
slowly.  Using observer does not introduces serious errors into the system: observation error ap-
proaches zero after 1-2s. However, it is seen from the Table 1 that if the rate of the mass change is 
large synchronization may be absent in the system with full measurements while stable synchro-
nous mode is achieved in the system with observer. 
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