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Abstract: In this paper we use a repetitive process setting to develop a new iterative
learning control algorithm for plants modelled by a discrete linear time-varying
state space model. As the next step in evaluating its performance, the results of
a simulation based study are given where the plant model used is that obtained
from frequency responses tests on a gantry robot.

Keywords: Linear repetitive process, iterative learning control

1. INTRODUCTION

Iterative learning control (ILC) is a technique
for controlling systems operating in a repetitive
(or pass-to-pass) mode with the requirement that
a reference trajectory r(t) defined over a finite
interval 0 ≤ t ≤ T is followed to a high precision.
Examples of such systems include robotic manip-
ulators that are required to repeat a given task to
high precision, chemical batch processes or, more
generally, the class of tracking systems.

Since the original work (Arimoto et al., 1984) in
the mid 1980’s, the general area of ILC has been
the subject of intense research effort. One possible
initial source for the literature here is the survey
paper (Hyo-Sung Ahn et al., 2007). One approach
in ILC is to construct the input to the plant or
process from the input used on the last trial plus
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an additive increment which is typically a function
of the past values of the measured output error,
i.e. the difference between the achieved output on
the current pass and the desired plant output.
As such, it places the analysis of ILC schemes
firmly outside standard (or 1D) control theory —
although it is still has a significant role to play in
certain cases of practical interest.

One approach to ILC is to use 2D systems theory
where the directions of information propagation
are from trial-to-trial and along the trials respec-
tively. As the trial length is finite, this makes the
theory of repetitive processes (see the references
in (Rogers and Owens, 1992)) a natural setting for
analysis and control law design. This is basis for
the analysis in this paper and note that repetitive
processes (unlike some other 2D systems models)
have many control related applications.

In this paper, we first show how ILC schemes
can be designed for a class of discrete linear
time-varying systems by, in effect, extending tech-



niques developed for 1D systems, e.g. (Siljak and
Stipanovic, 2000) using the framework of linear
repetitive processes. As a first step in evaluat-
ing its performance, the results of a simulation
based study (for time-invariant dynamics) are
given where the plant model has been constructed
from frequency response tests on a gantry robot
which has also been extensively used in other ILC
research where experimental verification of the
resulting control algorithms is also undetaken —
see, for example, (Ratcliffe et al., 2006)).

Throughout this paper, the symbols M � 0,
M ≺ 0, M � 0, M � 0 are used to denote sym-
metric matrices which are positive definite, neg-
ative definite, positive semi-definite and negative
semi-definite respectively.

2. BACKGROUND AND INITIAL ANALYSIS

The discrete linear time-varying systems consid-
ered in this paper are described by the following
state-space model

x(p + 1) = Ax(p) + µE[p]Hx(p) + Bu(p)
y(p) = Cx(p)

p = 0, 1, . . . , α− 1
(1)

where x ∈ Rn, u ∈ Rr, y ∈ Rm denotes the state,
input and output vectors respectively. The initial
state state vector is taken as x(0) = d0. Moreover,
we deal with the case when these systems operate
over a finite duration α. In the time-varying
term µE[p]Hx(p), µ is a constant positive scalar,
the normalizing matrix H ∈ Rh×n has constant
entries and it is E[p] ∈ Rn×h which brings in
the time-varying dynamics. This last matrix is
assumed to satisfy

E[p]T E[p] < I ∀p = 0, 1, . . . , α− 1 (2)

To introduce the ILC setting, we use the integer
subscript k ≥ 0 to denote the current trial and
rewrite the model of (1) as

xk(p + 1) = (A + µΨ(p))xk(p) + Buk(p)
yk(p) = Cxk(p)

(3)

where
Ψ(p) = E[p]H (4)

Here we aim to control the ILC dynamics by a
linear controller and it is also required that the
transient behavior is ‘acceptable’. Hence a first
major question to be asked now is: how ‘large’
can the time varying component be before a linear
control law cannot be used. As argued below, this
is equivalent to obtaining the upper bound on the
acceptable values of µ > 0 in (1).

Consider now a so-called discrete linear repeti-
tive process (Rogers and Owens, 1992) described
by the following state-space model over p =
0, 1, · · · , p− 1, k ≥ 1

xk(p + 1) = Âxk(p) + B̂uk(p) + B̂0yk−1(p)

yk(p) = Ĉxk(p) + D̂uk(p) + D̂0yk−1(p)
(5)

where (on pass k) xk(p) ∈ Rn, uk(p) ∈ Rr,
yk(p) ∈ Rm are the state, input and pass profile
vectors respectively. Consider also (3) in the case
when µΨ(p) = 0 and define the error on trial k as

ek(p) = yr(p)− yk(p) (6)

where yr(p) denotes the reference signal to be
learnt. Then a known result is that, in its strongest
form, convergence of the ILC scheme is equiva-
lent to the stability property of linear constant
pass length repetitive processes known as stability
along the pass. In the repetitive process case, this
is equivalent to uniform bounded input bounded
output stability (defined in terms of the norm on
the underlying function space), i.e. independent of
the pass length.

We now develop results which are used in the
next section to extend this last result to the case
when µΨ(p) 6= 0. To begin, first rewrite the first
equation of the model of (3) in the form

xk(p) = (A+µΨ(p−1))xk(p−1)+Buk(p−1)

and introduce
ηk+1(p + 1) = xk+1(p)− xk(p)

∆uk+1(p) = uk+1(p)− uk(p) (7)

Then we have

ηk+1(p + 1) = (A + µΨ(p− 1))ηk+1(p)

+ B∆uk+1(p− 1)

Consider also a control law of the form

∆uk+1(p) = K1ηk+1(p + 1) + K2ek(p + 1) (8)

and hence

ηk+1(p + 1) = (A + µΨ(p− 1) + BK1)ηk+1(p)

+ BK2ek(p) (9)

Also ek+1(p) − ek(p) = yk(p) − yk+1(p) and we
then obtain

ek+1(p)− ek(p) = Cxk(p)− Cxk+1(p)
= C(A + µΨ(p− 1))(xk(p− 1)− xk+1(p− 1))

+ CB(uk(p− 1)− uk+1(p− 1))

Note also that the time varying term does not
depend on k and hence (using (7)) and taking into
account (8) we obtain

ek+1(p) = −C(A + BK1)ηk+1(p)
− CµΨ(p− 1)ηk+1(p) + (I − CBK2)ek(p) (10)

Introduce now
Â = A + BK1 B̂0 = BK2

Ĉ = −C(A + BK1) D̂0 = (I − CBK2)

Ψ̂(p) = Ψ(p− 1) Υ̂(p) = CΨ(p− 1)

(11)

Then clearly (9) and (10) can be written as
ηk+1(p + 1) = [Â + µΨ̂(p)]ηk+1(p) + B̂0ek(p)

ek+1(p) = [Ĉ − µΥ̂(p)]ηk+1(p) + D̂0ek(p)
(12)

which is of the form (5) and hence the repetitive
process stability theory can be applied.



3. MAIN RESULT

In order to prove the main result, we will require
the well known Schur’s complement formula and
also the following result (whose proof is also well
known).

Lemma 1. Assume that Σ,Θ,Ξ,Π and ∆̄ are real
matrices, with Ξ symmetric and Π � 0, such that
∆̄T Π∆̄ � Π. Then

Σ + Θ∆̄Ξ + ΞT ∆̄T ΘT ≺ 0 (13)

if and only if there exists a scalar λ > 0 satisfying

Σ + λΘΠΘT + λ−1ΞT ΠΞ ≺ 0

Theorem 1. The ILC scheme described by (12) is
stable along the pass for all time-varying uncer-
tainties satisfying (2) if there exist R1 � 0, R2 �
0, X1 � 0, X2 � 0 and a scalar λ > 0 such
that the following Generalized Eigenvalue Prob-
lem (GEVP) is feasible

minimize; η > 0
subject to: 

0 0 0 0 0
0 0 0 0 0
0 0 I 0 0

0 0 0 CCT 0
0 0 0 0 0

 ≺ ηΩ

where

Ω =


X1

0
−AX1 −BR1

CAX1 + CBR1

−HX1

0 −X1AT −RT
1 BT

X2 −RT
2 BT

−BR2 X1

−X2 + CBR2 0
0 0

X1AT CT + RT
1 BT CT −X1HT

−X2 + RT
2 BT CT 0

0 0
X2 0
0 0.5λI


and Ω � 0. Also an upper bound for the parameter
µ in the time-varying uncertainty description is
given by

µmax =
√

1
ηλ

(14)

If this condition holds, the control law matri-
ces K1 and K2 are given by K1 = R1X

−1
1 and

K2 = R2X
−1
2 .

Proof :
Numerous conditions for stability along the pass
exist but here we use the co-called 2D Lyapunov
equation approach (Rogers and Owens, 1992) and
hence (12) is stable along the pass if there exists
P = diag{P1, P2} � 0 such that

Φ[p]T PΦ[p]− P ≺ 0 ∀p = 0, 1, . . . , α− 1 (15)

where

Φ[p] =
[

Â + µΨ̂(p) B̂0

Ĉ − µΥ̂(p) D̂0

]
Now apply the Schur’s complement formula to
(15) with W = −P , L = Φ[p] and V = P, then
set X1 = P−1

1 , X2 = P−1
2 and finally pre- and

post multiply the result from this second step by
diag

{
X1, X2, I, I

}
to obtain

M =

 −X1 0
0 −X2

ÂX1 + µΨ̂(p)X1 B̂0X2

ĈX1 − µΥ̂(p)X1 D̂0X2

X1ÂT + X1µΨ̂(p)T X1ĈT −X1µΥ̂(p)T

X2B̂T
0 X2D̂T

0

−X1 0
0 −X2

 ≺ 0 (16)

The problem now is that (16) contains the time-
varying terms Ψ̂(p) and Υ̂(p) and hence severe de-
sign difficulties. What we require here is a control
law design algorithm which ensures stability along
the pass under the constraint (2) and also gives
the bound on the maximum value of µ allowed.
Next show how this outcome can be obtained
using the results of Lemma 1.

First write M of (16) as

M = Σ + z =

 −X1 0 X1ÂT X1ĈT

0 −X2 X2B̂T
0 X2D̂T

0

ÂX1 B̂0X2 −X1 0

ĈX1 D̂0X2 0 −X2


+

 0 0 X1µΨ̂(p)T −X1µΥ̂(p)T

0 0 0 0

µΨ̂(p)X1 0 0 0

−µΥ̂(p)X1 0 0 0

 (17)

Using (4) and (11), z in (17) can now be written
as z = Θ∆̄Ξ + ΞT ∆̄T ΘT , where

Θ =

 0 0 0 0
0 0 0 0
0 0 µI 0
0 0 0 −µC

 , Π = I,

∆̄ =

 0 0
0 0

E[p− 1] 0
−E[p− 1] 0

 , Ξ =

[
HX1 0 0 0
HX1 0 0 0

]
.

(18)

Moreover, the requirement that ∆̄T Π∆̄ � Π (see
Lemma 1) holds due to the assumption (2).

Return now to M = Σ + λΘΠΘT + λ−1ΞT ΠΞ.
Then substituting (18) into (13) and using (11) we
obtain (after some routine manipulations which
are omitted here)

M =

 −X1 0
0 −X2

AX1 + BK1X1 BK2X2

−CAX1 − CBK1X1 X2 − CBK2X2

X1AT + X1KT
1 BT −X1AT CT −X1KT

1 BT CT

X2KT
2 BT X2 −X2KT

2 BT CT

−X1 + λµ2I 0

0 −X2 + λµ2CCT





+

 X1HT

0
0
0

[
2λ−1I

] [
HX1 0 0 0

]
≺ 0

or, on noting the fact that M can be written as
M = Ŵ + L̂T V̂ L̂ and then applying the Schur’s
complement formula,

−X1 0
0 −X2

AX1 + BK1X1 BK2X2

−CAX1 − CBK1X1 X2 − CBK2X2

HX1 0

X1AT + X1KT
1 BT

X2KT
2 BT

−X1 + λµ2I
0
0

−X1AT CT −X1KT
1 BT CT X1HT

X2 −X2KT
2 BT CT 0

0 0

−X2 + λµ2CCT 0
0 −0.5λI

 ≺ 0 (19)

The final step is to obtain the GEVP problem
(which is suitable for numerical calculations). This
follows immediately on setting R1 = K1X1, R2 =
K2X2 and γ = λµ2 in (19), multiplying both
sides of resulting matrix inequality by η = γ−1,
and then rearranging the outcome of these steps
to obtain the GEVP problem of the theorem and
also (14). This completes the proof. �

The condition of Theorem 1 is sufficient but
not necessary and hence could lead to an over-
conservative design. However, unlike all other
known necessary and sufficient conditions for sta-
bility along the pass of discrete linear repetitive
processes, it does lead directly to control law de-
sign. An obvious topic for further research is to
obtain less conservative versions of this result.

4. A SIMULATION EXAMPLE

Other work, e.g. (Ratcliffe et al., 2006) has used
a gantry robot facility to experimentally verify
ILC designs. These results are based on approxi-
mate linear models of the dynamics of each axis
obtained by frequency response tests. Here we
use the X axis model which with the matched
pole-zero method and a sampling period of Ts =
0.005[s] yields the following z-transfer function
description of the dynamics

Gx(z) =
14.8651z(z − 0.08201)

(z − 1)(z2 − 1.738z + 0.8869)
·

·
(z2 − 1.676z + 0.9485)(z2 − 1.25z + 0.8959)

(z2 − 1.44z + 0.8986)(z2 + 0.9389z + 0.4979)
(20)

and hence the state-space model matrices

A =


−0.469 1 0 0
−0.277 −0.469 −0.377 −0.742

0 0 0.72 1
0 0 −0.38 0.72
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
0.676 2.03 1.62

0 0 0
0.215 0.645 0.515
0.869 1 0
−0.132 0.869 1.32

0 0 1

 , B =


0
0
0
0
0
0
4


C =

[
3.28 −5.03 −0.868 −1.71

1.55 4.66 3.72
]

D = 0

At this stage, the theory developed in this paper
can be used to design an ILC control law for the
case when unmodelled time varying dynamics are
present which can be modelled in the form of (3).
Space limitations prohibit a full investigation and
hence we only give results for the case when

H =[
0.123 0.933 0.00624 0.096 0.909 0.0978 0.652
0.591 0.126 0.3 0.424 0.574 0.034 0.445
0.297 0.658 0.763 0.939 0.329 0.173 0.485

]
The control law matrices in this case are

K1 =
[
−0.0371 −0.189 −0.0645 −0.0605

0.131 0.17 −0.225
]

K2 = 0.00847

and the maximum allowed nonlinearity parame-
ter µ is 0.0014.

Suppose now that the trial length is α = 400 (in
the case of the gantry robot this would correspond
to a trial duration of 2 seconds) and the reference
signal is given by Figure 1. Moreover, the term
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Fig. 1. Reference signal

E(p) is taken as pseudo-random (uniform distri-
bution with values ranging from 0 to 1).

Figure 2 shows the response of the controlled
process and by trial k = 30 the error has become
very small.
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Fig. 2. Evolution of the controlled dynamics
5. CONCLUSIONS

This paper has developed a new design method
for ILC for the case of systems described by linear
time-varying models. These have been developed
by formulating the ILC design problem in the
linear repetitive process setting. These results
are the first which extend the repetitive process
approach to ILC design beyond the case of linear
time invariant plant dynamics and much further
research is required before its effectiveness can be
fully assessed. This is the subject of ongoing work
and will be reported on in due course.
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